
Citation: Zhao, J.; Yao, X.; Wang, Y.;

Yi, Z.; Xie, Y.; Zhou, X. Lightweight-

Improved YOLOv5s Model for Grape

Fruit and Stem Recognition. Agriculture

2024, 14, 774. https://doi.org/

10.3390/agriculture14050774

Academic Editor: Massimo Cecchini

Received: 27 March 2024

Revised: 8 May 2024

Accepted: 12 May 2024

Published: 17 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Lightweight-Improved YOLOv5s Model for Grape Fruit and
Stem Recognition
Junhong Zhao 1,2, Xingzhi Yao 1, Yu Wang 1,* , Zhenfeng Yi 1, Yuming Xie 2 and Xingxing Zhou 2

1 College of Engineering, South China Agricultural University, Guangzhou 510642, China;
zhaojunhong@gdaas.cn (J.Z.); yaoxingzhi@stu.scau.edu.cn (X.Y.); yizhenfeng@stu.scau.edu.cn (Z.Y.)

2 Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
xieyuming@gdaas.cn (Y.X.); zhouxingxing@gdaas.cn (X.Z.)

* Correspondence: yu-wang@scau.edu.cn

Abstract: Mechanized harvesting is the key technology to solving the high cost and low efficiency
of manual harvesting, and the key to realizing mechanized harvesting lies in the accurate and fast
identification and localization of targets. In this paper, a lightweight YOLOv5s model is improved
for efficiently identifying grape fruits and stems. On the one hand, it improves the CSP module in
YOLOv5s using the Ghost module, reducing model parameters through ghost feature maps and
cost-effective linear operations. On the other hand, it replaces traditional convolutions with deep
convolutions to further reduce the model’s computational load. The model is trained on datasets
under different environments (normal light, low light, strong light, noise) to enhance the model’s
generalization and robustness. The model is applied to the recognition of grape fruits and stems, and
the experimental results show that the overall accuracy, recall rate, mAP, and F1 score of the model
are 96.8%, 97.7%, 98.6%, and 97.2% respectively. The average detection time on a GPU is 4.5 ms,
with a frame rate of 221 FPS, and the weight size generated during training is 5.8 MB. Compared
to the original YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x models under the specific orchard
environment of a grape greenhouse, the proposed model improves accuracy by 1%, decreases the
recall rate by 0.2%, increases the F1 score by 0.4%, and maintains the same mAP. In terms of weight
size, it is reduced by 61.1% compared to the original model, and is only 1.8% and 5.5% of the
Faster-RCNN and SSD models, respectively. The FPS is increased by 43.5% compared to the original
model, and is 11.05 times and 8.84 times that of the Faster-RCNN and SSD models, respectively.
On a CPU, the average detection time is 23.9 ms, with a frame rate of 41.9 FPS, representing a 31%
improvement over the original model. The test results demonstrate that the lightweight-improved
YOLOv5s model proposed in the study, while maintaining accuracy, significantly reduces the model
size, enhances recognition speed, and can provide fast and accurate identification and localization for
robotic harvesting.

Keywords: YOLOv5s; lightweight; target detection; mechanized picking; grape fruits and stems

1. Introduction

With the increase in the scale and yield of grape cultivation, mechanized harvesting
has become crucial in addressing issues such as high labor costs and low efficiency. Grapes,
as an important economic fruit, primarily rely on manual labor for mechanical and repeti-
tive harvesting, which not only demands a substantial workforce but also results in rising
labor costs. Currently, the development of smart agriculture has made mechanized fruit
harvesting a key means to address the shortage of agricultural labor and high labor costs,
with the application of machine vision and related algorithms enhancing the efficiency,
intelligence, and remote interaction of harvesting robots in agricultural environments. How-
ever, one of the major bottlenecks in the widespread adoption of mechanized harvesting
technology is the low target detection and recognition rate of grape fruits and stems during
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the mechanical harvesting process [1]. Achieving rapid and accurate recognition of the
target being harvested is crucial for improving harvesting efficiency. In recent years, with
the development of computer vision technology, research in the field of fruit-picking robot
vision can mainly be categorized into target detection based on digital image processing
and deep learning methods [2].

Digital image processing-based target detection methods primarily achieve target
recognition by integrating various algorithms for image segmentation, enhancement, and
feature extraction. They utilize important features such as colors and edge information
of the target in the image to perform object detection [3]. Additionally, when clustering a
specific color component in different color spaces (e.g., RGB, HSV, HIS, YUV, etc.), target
segmentation can be performed, followed by post processing using morphological methods
to achieve target detection [4–7]. However, traditional digital image processing methods
are limited in their feature extraction capabilities, and they cannot extract deep features
from images, making them inadequate for accurate identification of grape fruits and stems
in complex agricultural scenarios.

In contrast to traditional image processing methods, deep learning methods employ
deep neural networks with strong feature extraction and self-learning capabilities, and
they are widely used for fruit detection in agricultural production environments, including
grapes [6,7], apples [8,9], mangoes [10], tomatoes [11], and more. Deep neural networks
mainly involve two types: two-stage object detection networks focused on detection accu-
racy, such as Faster-RCNN [8,12–14] and Mask-RCNN [15], and one-stage object detection
networks emphasizing detection speed, such as YOLOv3 [16], YOLOv4 [10,11,17–19],
YOLOv5 [9,20–23], and SSD [24,25]. One-stage object detection networks can directly gener-
ate prediction boxes in images, significantly boosting detection speed. With the application
of attention mechanisms in the field of computer vision, one-stage object detection net-
works, like the YOLO series, have widely incorporated channel attention (CA) [9,18,21],
spatial attention (SA) [17], and convolutional block attention module (CBAM) [22,23] in
fruit target detection. Moreover, combining one-stage detection networks with traditional
image processing methods, such as K-means clustering [11,20], image enhancement [16],
and HSV color space [11,19], can result in better feature extraction. For instance, Chen
et al. [20] used YOLOv5 with K-means++ clustering for automatic selection of target
datasets and introduced coordinated attention modules to enhance feature extraction for
occluded camellia oleifera fruit, achieving a mean average precision (mAP) of 94.10% and a
frame rate of 74.8 FPS with a model size of 27.1 MB. Li et al. [19] combined the YOLOv4 and
HSV methods for recognizing ripe tomatoes, achieving a recognition accuracy of 94.77%.
Additionally, Zhang et al. [11] used YOLOv4 to identify tomato clusters and extract stem
images by converting them to the HSV color space using the K-means clustering algorithm.
Chen et al. [24] introduced the MobileNetV3 lightweight module in SSD to enable the
recognition of tomato flowers and fruits with an average recognition rate of 92.57% and a
recognition speed of 0.079 s per frame.

However, the majority of the aforementioned studies predominantly focus on improv-
ing recognition accuracy. An increase in accuracy often implies an escalation in model
parameters and computational load, leading to a decrease in detection speed. In order
to achieve a balance between detection speed and accuracy, some scholars have delved
into the field of model lightweighting. Yu Sun et al. [26] employed partial convolution
(PConv) to reduce floating-point operations and create a lightweight network. By build-
ing upon YOLOVX-Tiny, Ji et al. [27] utilized Shufflenetv2 as the backbone network for
apple detection. Zeng et al. [28] replaced CSPDarknet with Mobilebetv3 to lightweightly
enhance YOLOv5s, reducing model computational load. Bin Zhang [29], Rui Ren [30], and
others achieved YOLO model lightweighting by introducing the Ghost module, resulting
in improved models with sizes of 11.5 MB and 13.93 MB, respectively. Jiqing Chen [31]
designed a novel backbone feature extraction network, SE-CSPGhostnet, significantly re-
ducing model parameters, with the improved weight size being 32.5 MB. While these
lightweighting studies effectively reduce model size, they also, to some extent, sacrifice
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model accuracy. Furthermore, the post-improvement model memory footprint remains
relatively large, and corresponding validations on pure CPU devices are lacking. There
is limited exploration of the issue of model lightweighting, which can reduce computa-
tional load during recognition, accelerate detection speed, and simultaneously decrease
model size.

In summary, the YOLO model, owing to its fast detection speed, represents the pri-
mary direction for target detection. However, existing YOLO model research primarily
considers the trade-off between real-time detection speed and accuracy, making it chal-
lenging to meet the multifaceted requirements of mechanized harvesting for detection
accuracy, speed, and model size. For mechanized harvesting, it is essential to maintain
detection accuracy while achieving fast detection speed and simultaneously reducing the
model’s size for deployment on edge devices. Therefore, this paper proposes a lightweight-
improved YOLOv5s model, focusing on lightweighting the CSP module and convolutional
layers within YOLOv5s. The CSP module in YOLOv5s is improved by using the Ghost
module, and the model parameters are reduced by ghost feature maps and less costly linear
operations in the Ghost module. Moreover, the traditional convolution in the original
network is replaced by deep convolution to further reduce the computations of the model,
and the computations of different environments (normal light, low light, strong light, noise)
to improve the generalization ability and robustness of the model. Finally, the proposed
model is experimentally validated for target detection performance by identifying grape
fruits and stems on both GPU and CPU platforms.

2. Materials and Methods
2.1. Image Acquisition and Augmentation

The grape fruit images used in this study were captured in the standardized grape
orchard shown in Figure 1, located at Baiyun Base in Guangdong Academy of Agricultural
Sciences, Guangzhou City, Guangdong Province, 23◦23′ N, 113◦26′ E. The image acquisition
equipment used was an Olympus TG-4 digital camera (resolution 3200 × 2400 pixels, focal
length 4.5–18 mm, shutter speed 1/2-1/2000 s, ISO100–6400), on 24 May 2022, the collection
time was from 9:00 to 15:00, and the shooting distance was approximately 500–1000 mm. A
total of 564 images of Shine Muscat in the greenhouse environment were collected under
clear weather conditions.
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To improve the model’s robustness and its ability to recognize grape fruits in different
environments and prevent overfitting due to a lack of data, Gaussian noise was added to
the collected images, and brightness levels were adjusted to simulate different weather
like foggy environment (noise interference), overcast (low-light), and high-light conditions.
Under different lighting conditions, images may contain varying feature information,
which contributes to the model learning richer and more robust feature representations.
By simulating real-world lighting variations, this enhances recognition accuracy. Gaussian
noise is a common image degradation phenomenon. By introducing noise during training,
the model can learn how to recover clear image features from noise, thus better handling
noisy images in practical applications. After data augmentation, there were 2256 images,
and the dataset was divided into a training set and a validation set in an 8:2 ratio.

2.2. Image Annotation

The collected images comprised only clear grape fruit clusters in the foreground, while
distant, blurry, and smaller images were disregarded. The gathered images were imported
into PaddlePaddle EasyDL to label a part of the images manually (about 100–200 images),
the ground truth contained the identified targets as comprehensively as possible to ensure
the quality of the dataset. EasyDL learns from the manually labeled images in the initial
stage to automatically annotate the remaining images. Subsequently, the labeled images
were subjected to scrutiny using the image labeling software, LabelImg (App version: 1.8.6),
in which any inaccuracies in the automatic annotation results were rectified through
manual modification. Compared to fully manual labeling, automatic labeling achieves
better accuracy and efficiency. The accuracy is significantly improved, resulting in fewer
images requiring manual correction after automatic labeling. Consequently, an XML file
conforming to the YOLO data format was generated. This file included the name of the
image, the count of labels within the image, the label names, and the corresponding x and
y coordinates for each label, representing the ground truth. The label names were divided
into two categories: “grapes” for grape fruit clusters and “stem” for grape stems. The
numbers of annotated labels for grapes and stems were 8169 and 6933, respectively. The
annotated label files were also divided into training and validation sets in an 8:2 ratio,
following the format of the PASCAL VOC dataset to create the dataset for this study.

2.3. Lightweight Improvement of YOLOv5s
2.3.1. YOLOv5s Model

YOLOv5 is a one-stage object detection model released by Ultralytics on June 9, 2020. It
is characterized by smaller average weight files, shorter training times, and faster inference
speeds, with a relatively small decrease in average detection accuracy. To date, YOLOv5
has been updated to version 7.0. This study used YOLOv5 version 6.0, which consists
of four main parts: input, backbone, neck, and prediction. Mosaic data augmentation
is applied to the input to enhance model generalization and robustness. YOLOv5 also
introduces an adaptive image scaling module to add minimal padding during resizing
to the standard size while preserving the original aspect ratio. The backbone uses the
CSPDarknet53 structure to enhance feature extraction capacity, reduce computation, and
memory usage while maintaining accuracy. The neck employs an FPN + PAN structure [32],
with FPN extracting strong semantic features and PAN extracting strong positional features.
These features are integrated for predicting objects at three different scales. CSP2 is used
within the neck to improve feature fusion capability. Prediction uses CIoU_Loss [33] as the
bounding box loss function to enhance speed and accuracy of regression prediction.

YOLOv5 version 6.0 includes the YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x models. Although YOLOv5n has the smallest number of parameters, its ac-
curacy is lower than other models. This study focused on improving the lightweight
YOLOv5s model with fewer parameters while maintaining model accuracy. In existing
lightweight improvement schemes for detection models, there is often a trade-off between
detection speed and accuracy. However, the lightweight solution proposed in this study
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can significantly improve the model’s detection speed while ensuring an increase in P
and maintaining mAP50 unchanged. The improvements are made to the CSP module
and convolutional layers using GhostBottleneck for CSP and deep convolution to replace
traditional convolution.

2.3.2. Ghost Module for CSP Improvement

The Ghost module [34] can generate more feature maps at a low cost by applying
a series of low-cost linear transformations to a set of inherent feature maps. During the
convolution operation, many feature maps are generated, and some of these feature maps
are similar. These similarities can be exploited through simple linear operations in the
Ghost module, which significantly reduce computational costs compared to convolution op-
erations. In the CSP model, the underlying structure still consists of stacked convolutional
layers and residual connections, and convolutional operations generate a large number
of redundant feature maps. The Ghost module can reduce the generation of redundant
feature maps through linear operations, thereby reducing computational costs.

Deep convolutional neural networks often consist of a large number of convolutions,
increasing computational costs. Although there are studies using Shuffle operations [35]
to construct efficient neural networks by smaller convolutional kernels, convolutional
layers with a convolutional kernel size of 1 × 1 still incur significant memory usage and
FLOPs. In mainstream neural network computations, there are similar features present
in the intermediate feature maps. Reducing the convolutional kernels used to generate
intermediate feature maps with similar features can decrease the required resources. Given
input data X ∈ Rc×h×w, where c is the number of input channels, and h and w are the
height and width of the input data, respectively, the arbitrary convolutional layer used to
generate n feature maps can be expressed as:

Y = X ∗ f + b (1)

where * represents the convolution operation; b represents the bias term; f ∈ Rc×k×k×n

is the convolutional filter in this layer; Y ∈ Rh′×w′×n is the output feature map with n
channels; h′ and w′ are the height and width of the output data, respectively; and k × k
is the kernel size of the convolutional filter. During the convolution process, the required
FLOPs can be calculated as n · h′ · w′ · c · k · k.

As shown in Equation (1), the dimensions of the input and output feature maps
determine the number of parameters (in f and b) to be optimized.

It can be seen in Figure 2, the output feature maps of convolutional layers typically
contain a large amount of redundancy, some of which may be similar to each other. The
redundant feature maps can be obtained through low-cost transformations, which typically
have smaller sizes and are generated by ordinary convolutional kernels. Specifically, for
input data X ∈ Rc×h×w, when using basic convolution to generate m intrinsic feature maps
Y′ ∈ Rh′×w′×m,

Y′ = X′ ∗ f ′ + b (2)

where f ′ ∈ Rc×k×k×m is the convolutional filter used to obtain the desired n feature maps,
in which m ≤ n, and a series of low-cost linear operations are performed on each feature
map according to Equation (3) to generate s ghost features.

yij = Φi,j
(
y′

i
)
, ∀i = 1, ..., m, j = 1, ..., s (3)

where y′
i is the ith intrinsic feature in Y′ ; and Φi,j is the jth (excluding the last one) linear

operation that generates the jth ghost feature map yij, that is, y′
i can be one or more ghost

feature maps
{

yij
}s

j=1, and the last one, Φi,s, is an identity map used to maintain the intrinsic
feature map. As shown in Figure 2, there are n = m · s feature maps Y = [y11, y12, · · ·, yms]
obtained via Equation (2) as the output data of the Ghost module, and the computational cost
of linear operations Φ on each channel is much lower than that of ordinary convolutions.
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To utilize the advantages of the Ghost module, GhostBottleneck stacks two Ghost
modules, similar to the basic residual blocks in ResNet [36]. The first Ghost module
serves as an expansion layer, increasing the number of channels, while the second Ghost
module reduces the number of channels for shortcut connections between the input and
output. Batch normalization (BN) [37] and ReLU non-linearity are applied after each
layer, according to the suggestion from MobileNetV2 [38] to avoid ReLU after the second
Ghost module.

The stride of GhostBottleneck is set to 1, and when the stride is 2, shortcut connections
are implemented through downsampling layers. Meanwhile, a deep direction convolution
(DWConv) [39] is inserted between two Ghost modules with a stripe of 2. In practice, the
Ghost module predominantly uses depthwise convolution for pointwise convolution to
improve efficiency. Multiple GhostBottlenecks are stacked to form GhostCSP_n, as shown
in Figure 3.

2.3.3. Depthwise Separable Convolution for Improved Convolutional Layers

Depthwise separable convolution (DSC) is constructed by combing depthwise convo-
lution (DWC) and pointwise convolution (PWC). This structure is illustrated in Figure 4.
DSC is similar to regular convolution in feature extraction but differs in that DWC focuses
on the spatial dimensions, while PWC focuses on the channel dimensions.

In regular convolution operations, a 3 × 3 kernel, for instance, performs convo-
lutions on both channel and spatial dimensions. For a three-channel color image, a
3 × 3 × 3 × 4 kernel is required to generate four feature maps. However, DSC splits the
channel and spatial dimensions into two separate steps. DWC operates on the channel
dimension and uses a 3 × 3 kernel on each channel individually. This produces three
feature maps, each generated by convolving the corresponding RGB channel. PWC then
operates on the spatial dimension and uses 1 × 1 × N × M kernels, where N is the number
of channels from the previous convolution, and M is the number of output feature maps.
PWC combines the depthwise feature maps, weighted by the depthwise direction, to gener-
ate new feature maps. The combination of these lightweight strategies for improving the
YOLOv5s model results in the network structure shown in Figure 5.
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2.4. Training and Evaluation
2.4.1. Training Platform

Both the training and testing of this research were conducted on the same computer
with the following hardware and software specifications: an Intel(R) Core (TM) i7-11700K
@3.6 GHz desktop computer with 16 cores, 64 GB of RAM, an NVIDIA GeForce RTX
3090 GPU with 24 GB of VRAM, running a 64-bit Ubuntu 18.04 operating system. The deep
learning environment used PyTorch, Python version 3.8.16, CUDA version 11.1, OpenCV
version 4.7.0.68, and the Python IDE was PyCharm Community Edition 2022.

2.4.2. Model Training

The improved YOLOv5s model was trained using the Adam optimization algorithm.
Pretrained weights of YOLOv5s on the COCO dataset were utilized, in which the batch size
for model training was set to 32, and batch normalization (BN) was applied at each training
step for weight regularization. The initial learning rate was 0.01, weight decay was 0.0005,
momentum was set to 0.937, and mosaic augmentation was used during training. The hue
(H), saturation (S), and brightness (V) augmentation coefficients were set to 0.015, 0.7, and
0.4, respectively. The number of training epochs was 200, the IoU threshold was set to 0.2,
and the input image size was 1280 × 1280. After training, the trained model’s weights
were saved, and the model’s precision (P), recall (R), mean average precision (mAP), and
frame rate were evaluated. The changes in various loss values during training are shown
in Figure 6, and the changes in the P-R and F1 score are illustrated in Figure 7.
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2.4.3. Model Validation and Testing

The trained grape fruit and stem recognition model was evaluated using metrics such
as precision, recall, mean average precision (mAP), and F1 score. The evaluation was
performed on both the fruit and stem recognition model using the validation dataset. The
evaluation metrics were calculated as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

mAP =
1
C

N

∑
k=i

P(k)∆R(k) (6)

F1 =
2 × Precision × Recall

Precision + Recall
(7)
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In Equation (4), TP represents the number of correctly identified targets, and FP
represents the number of false positives. In Equation (5), FN represents the number of
false negatives. In Equation (6), C is the number of object categories, N is the number of
IoU thresholds, k is an IoU threshold, P(k) is precision, and R(k) is recall. In Equation (7),
Precision and Recall are derived from Equation (4) and Equation (5), respectively.
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3. Results
3.1. The Performance of Lightweight-Improved YOLOv5s

The performance of the lightweight-improved YOLOv5s object detection model was
validated on a dataset of grape fruits and stems under various lighting conditions, including
normal light, low light, strong light, and noisy environments. The validation results for
the model on a set of 452 validation images revealed a total of 3129 recognized objects,
with 1737 grape fruit (grapes) targets and 1392 stem (stem) targets. The specific recognition
results are shown in Table 1, which demonstrate that, for grape fruits, the model achieved
precision, recall, mAP, and F1 score of 97.1%, 98.5%, 99.2%, and 97.8%, respectively. For
stems, the model achieved precision, recall, mAP, and F1 score of 96.5%, 96.8%, 98.0%, and
96.6%, respectively. The overall recognition accuracy, recall, mAP, and F1 score were 96.8%,
97.7%, 98.6%, and 97.2%, respectively. The average processing time for one image on a GPU
was 4.5 ms, with a frame rate of 221 FPS. The weight size of the trained model was 5.8 MB.
In terms of resource utilization, the parameters of the original model were 7,025,023, and
the FLOPs were 16.0 GFLOPs. After improvement, the overall parameters of the model
were 2,444,583, with FLOPs of 5.7 GFLOPs.

Table 1. Results of grape fruit and stem recognition by lightweight-improved YOLOv5s.

Class Number of
Pictures

Number of
Targets P (%) R (%) Map (%) F1 (%)

Grapes 452 1737 97.1 98.5 99.2 97.8
Stems 452 1392 96.5 96.8 98.0 96.6
Total 452 3129 96.8 97.7 98.6 97.2

The performance of the model was evaluated using trained weights on the test set,
and the test results showed that the position boxes and corresponding label names of grape
clusters and fruit stems were identified in the images. Figure 8 shows the recognition
results of the proposed model under normal lighting and simulated cloudy weak light,
sunny strong light, and noise interference environments. The red box represents the fruits,
and the pink box represents the stems. From the figure, it can be seen that the proposed
model could not only achieve good recognition in cloudy weak light and sunny strong light
environments, but it also recognized targets well in severe noise interference situations.
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3.2. Comparison of Recognition Results via Different Object Detection Models

To further verify the object recognition performance of the proposed model, the
lightweight-improved YOLOv5s model was trained and validated on the same dataset as
the original YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, Faster R-CNN [40], and SSD [41]
models. The input image size was uniformly scaled to 1280 × 1280 for all four models. Both
the Faster R-CNN and SSD models utilize a ResNet50 and FPN network as their backbone.
The four networks were compared based on metrics such as precision, recall, F1 score, mAP,
weight size, and frame rate. The validation results on the validation dataset for each metric
are shown in Table 2.

Table 2. Performance comparison of different target detection models.

Model P (%) R (%) F1 (%) mAP (%) Weight (MB) Frame Rate (FPS)

YOLOv5s 95.8 97.9 96.8 98.6 14.9 154
YOLOv5m 94.8 96.7 95.7 97.0 42.2 80
YOLOv5l 94.5 96.5 95.5 96.8 92.8 55
YOLOv5x 95.4 96.5 96.0 97.3 173.1 31

YOLOv7-tiny 94.9 95.5 95.2 97.8 12.3 161
Faster-RCNN 97.6 97.4 97.5 97.6 330.2 20

SSD 88.7 95.0 91.7 88.7 106.0 25
Our Model 96.8 97.7 97.2 98.6 5.8 221

According to Table 2, the lightweight-improved YOLOv5s model achieved a 1%
increase in precision (P) compared to the original YOLOv5s, a 0.2% decrease in recall (R),
a 0.4% increase in F1 score, and the same mAP. The weight size of the improved model
was 5.8 MB, which was a 61.1% reduction compared to the original model. The frame
rate was 221 FPS, which was a 43.5% improvement over the original model. Compared
with YOLOv5’s original model of different sizes, the improved model was better than
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the large model in terms of precision, recall, and mAP. Furthermore, the improved model
outperformed the Faster R-CNN and SSD models by 11.05 and 8.84 times in terms of
frame rate, respectively. The results demonstrated that the proposed network achieved
lightweight model deployment while effectively enhancing object detection efficiency
without sacrificing recognition accuracy.

In order to more intuitively evaluate the recognition ability of different models in
orchard environments, recognition tests needed to be conducted in orchard environments.
The Azure Kinect DK (RGBD camera used by future grape harvesting robots) was used to
capture images of the orchard environment and different models were used to recognize
the collected images, and the recognition results are shown in Figure 9.
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The recognition results of different models indicated that the two-stage object detection
model Faster RCNN, which focuses on accuracy, had high confidence. However, two-stage
models often require excessive computation and have slow detection speed, which cannot
meet the requirements of real-time detection well. In a single-stage model, the SSD model
could not recognize grape fruits and stems well, and the recognition results were relatively
poor in different environments. The recognition results of the YOLOv5 series models were
generally satisfactory, but existing lightweight improvements often tended to lower their
detection accuracy. The lightweight-improved YOLOv5s model proposed in this paper
demonstrated higher accuracy and completeness in detection compared to the original
model (YOLOv5s). Moreover, its recognition results even surpassed those of larger models
(YOLOv5m, YOLOv5l, YOLOv5x) and YOLOv7-tiny in certain scenarios.

3.3. Speed Comparison on Different CPUs

The goal of a lightweight model is to be applied in real-world scenarios. In the
experiments described above, the frame rate was calculated on GPUs, but in practical
applications, large and bulky computers are unlikely to be used in real-world scenarios.
Additionally, the cost of GPUs is relatively high. The purpose of network lightweighting
is to enable deployment on hardware with lower specifications, such as small computers
(e.g., industrial PCs), portable laptops without GPUs, and other terminal devices. To
validate the detection speed of the proposed model on different CPUs, the model was
tested on CPUs without GPU acceleration. The performance on different CPUs is shown in
Table 3.

Table 3. Parameters of four CPUs and results of model runs.

CPU Number of
Cores Threads Basic Frequency

(GHz)
Detection Time

(ms) Frame Rate (FPS) Original Model
Frame Rate (FPS)

Intel® Core TM i7-11700K 8 16 3.60 23.9 41.9 32.0
AMD RyzenTM7 5800H 8 16 3.20 94.9 10.5 9.0
Intel® Core TM i5-8500 6 6 3.00 100.7 9.9 8.2

Intel® Core TM i5-10210U 4 8 1.60 155.6 6.4 4.4

On each computer, the same environment as the research model was set up. During
testing, the default input image size was set to 640 × 640, IoU threshold to 0.45, and
confidence threshold to 0.5. The trained weights were used for object detection. The time
required to process each image was measured, and the frame rate was calculated. The
frame rate for the improved model was compared to the original YOLOv5s model for each
CPU. The results in Table 3 indicate that the Intel® Core TM i7-11700K, with the most cores
and highest clock speed, achieved the fastest detection speed with an average processing
time of 0.024 s and a frame rate of 41.9 FPS. The Intel® Core TM i5-10210U, with the fewest
cores and lowest clock speed, had an average processing time of 0.156 s and a frame rate
of 6.4 FPS. Compared to the original YOLOv5s model, the improved model achieved an
increased frame rate of 31.0%, 16.7%, 20.7%, and 45.5% for the four different CPUs.

4. Discussion

The experimental comparison results of detection accuracy and detection speed show
that the improved YOLOv5s model achieves a high level of accuracy and speed. In terms
of accuracy, compared with other large volume models in the same YOLO family and
SSD model, the improved YOLOv5s with small volume can achieve or even surpass the
accuracy of large volume models. Compared with the two-stage object detection algorithm
that pursues accuracy, its accuracy is also better than Faster-RCNN. In terms of speed, its
detection speed is also better than mainstream lightweight models (YOLOv7-tiny). The
analysis of its reasons mainly depend on the Ghost module. Although Ghost is a lightweight
module, it does not involve discarding features or other operations. Instead, it cleverly
uses linear operations to integrate similar feature maps generated during the convolution
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process in a simpler and faster way, and fuses them with the features extracted from the
convolution. By combining residual connections, shallow and deep features are combined.
For convolution operations, DWConv reduces the computational complexity by three
times compared to traditional convolution, further reducing computational complexity and
improving detection speed.

Of course, the improvement of recognition accuracy should not only rely on the
superiority of the model itself, but also be supported by a good dataset. A large number of
research results have shown that establishing an image dataset in multiple environments
can improve the recognition accuracy and robustness of deep learning models on the one
hand, and on the other hand, the trained model can be deployed on mobile harvesting
robots to achieve stable and reliable work. In real orchard scenes, the environment faced
is often much more complex than the scenes in the trained images, often due to different
lighting intensities. The similarity between the background and the color of the detected
object affects the accuracy of recognition. Therefore, based on the pursuit of lightweight
detection speed, establishing a dataset that is more similar to the environment can further
improve detection accuracy.

In terms of cost, the total cost of a mobile harvesting robot is approximately RMB
60,000 to 80,000 (calculated at RMB 70,000). Based on labor costs, a farm worker’s monthly
salary is about RMB 6500 (according to the wage standard of the Institute of Facility
Agriculture, Guangdong Academy of Agricultural Sciences). During the harvest period
after grape ripening (about 2–3 months, calculated at 2.5 months), two workers are often
required to work together. The annual labor cost is RMB 94,250, so cost control can be
reduced by about 26%. In terms of picking time, current robots take about 20 s to pick
a fruit, while manual picking relies on subjective judgment, cutting, and collection by
workers. On average, collecting a bunch of grapes takes about 30 s, and robot harvesting
can reduce time consumption by about 33%.

Furthermore, in our current work, we only detected ripe grape fruits. In reality, to
achieve full cycle and automatic harvesting of fruits by robots, it is necessary to combine
relevant technologies such as fruit maturity detection. In our previous work [42], we
have achieved deep learning image semantic segmentation combined with hyper-spectral
images for grape fruit maturity detection. The plan is to equip robots with hyperspectral
cameras for collaborative operations in the future, achieving fully automatic fruit detection
and maturity discrimination in picking ripe fruits.

5. Conclusions

To address the need on an efficient, accurate, and easily deployable grape fruit and
stem recognition model for mechanized harvesting, the study builds a grape dataset under
different lighting conditions, including normal light, low light, strong light, and noisy
interference, and a lightweight YOLOv5s model is improved for identifying grape fruits
and stems. To achieve lightweighting, the network architecture improves the original CSP
module by replacing it with the GhostCSP module and upgrades traditional convolutions
to DWC to further reduce parameters and computations. When applied to grape fruit
and stem recognition under different environments, the experimental results show that
the improved model effectively recognizes targets in various environments, improves
detection speed without compromising detection accuracy, and reduces model weight
size. The model’s precision, recall, mAP, and F1 score are 96.8%, 97.7%, 98.6%, and 97.2%,
respectively, with a model size of 5.8 MB, an average detection speed of 4.5 ms, and a frame
rate of 221 FPS.

When compared to the original YOLOv5s, the improved model increases precision
by 1%, decreases recall by 0.2%, improves F1 score by 0.4%, maintains the same mAP,
reduces weight size by 61%, and increases the frame rate by 43.5%. When comparing the
YOLOv5m, YOLOv5l, YOLOv5x, YOLOv7 tiny, Faster R-CNN, and SSD models, it was
found that except for the precision and F1 score of Faster R-CNN, all other indicators were
better than the above models. The detection speed of the improved model on four different
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CPUs is compared to the original YOLOv5s model, showing improvements of 31.0%, 16.7%,
20.7%, and 45.5%, respectively. These results further validate the significant efficiency
improvements of the model for object detection on different CPU platforms. The improved
model proposed in this article has been validated for feasibility on harvesting robots, and in
the future, multiple varieties of grapes can be considered as identification targets, providing
a universal and reliable recognition model for the mechanized harvesting of grapes that
will help to improve harvesting efficiency and alleviate the shortage of agricultural labor
and high labor costs.
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