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Abstract: To address the challenges in industrial precision component detection posed by existing
point cloud datasets, this research endeavors to amass and construct a point cloud dataset comprising
1101 models of miniature gears. The data collection and processing procedures are elaborated upon
in detail. In response to the segmentation issues encountered in point clouds of small industrial
components, a novel Point Transformer network incorporating a multiscale feature fusion strategy is
proposed. This network extends the original Point Transformer architecture by integrating multiple
global feature extraction modules and employing an upsampling module for contextual information
fusion, thereby enhancing its modeling capabilities for intricate point cloud structures. The network
is trained and tested on the self-constructed gear dataset, yielding promising results. Comparative
analysis with the baseline Point Transformer network indicates a notable improvement of 1.1% in
mean Intersection over Union (mIoU), substantiating the efficacy of the proposed approach. To
further assess the method’s effectiveness, several ablation experiments are designed, demonstrating
that the introduced modules contribute to varying degrees of segmentation accuracy enhancement.
Additionally, a comparative evaluation is conducted against various state-of-the-art point cloud
segmentation networks, revealing the superior performance of the proposed methodology. This
research not only aids in quality control, structural detection, and optimization of precision industrial
components but also provides a scalable network architecture design paradigm for related point
cloud processing tasks.

Keywords: point cloud segmentation; point cloud dataset; global feature; multi-scale fusion;
micro-gear

1. Introduction

With the development of LiDAR, RGB-D cameras, and 3D structured light sensors,
and the trend towards miniaturization, portability, and automation of acquisition devices
becoming increasingly evident, the collection of point cloud data has become more conve-
nient. Compared to two-dimensional data, point cloud data contain rich spatial structural
information, making it a data type with a very high information density. Point cloud segmen-
tation technology refers to the process of dividing a large amount of raw point cloud data
into multiple subsets, each representing a separate entity or a relatively independent part
within the depicted object. This technology is widely applied in fields such as autonomous
driving [1–4], robotic perception [5–7], and 3D environment understanding [8–10].

Datasets serve as the foundation for deep learning. However, existing public datasets
often focus on areas like autonomous driving and indoor/outdoor environments, with
few datasets dedicated to the precision industrial component sector. Given that industrial
parts often have complex shapes and small gears represent these components widely
used across various sectors and that are irreplaceable in many aspects, studying such

Appl. Sci. 2024, 14, 4271. https://doi.org/10.3390/app14104271 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14104271
https://doi.org/10.3390/app14104271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5928-2995
https://doi.org/10.3390/app14104271
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14104271?type=check_update&version=1


Appl. Sci. 2024, 14, 4271 2 of 17

representative industrial components can facilitate the broad application of deep learning
in industrial production.

Based on this, the present study employs Metal Injection Molding [11–16] (MIM)
technology and designs experiments based on factorial design [17], producing gears and
using a 3D structured light scanner to collect point cloud data of all gear shapes throughout
the MIM process, thereby constructing a dataset containing 1101 point cloud datasets of
small gears. Subsequently, the gears are manually annotated and segmented.

Using the dataset created for this study, a multiscale feature fusion Point Transformer
network is proposed, based on the PointTransformer [18] as the underlying network. This
network incorporates multiple global feature extraction modules to extract features at
multiple levels and employs an up-and-down sampling module [19] to integrate multi-
scale contextual information, enhancing the modeling capability for complex structured
point clouds.

The structure of this paper is as follows. Section 2 introduces some commonly used
public point cloud datasets and the MIM process along with the orthogonal experimental
plan, followed by the point cloud data collection process, and finally the dataset’s anno-
tation and enhancement process. Section 3 introduces recent point cloud segmentation
network models, details the network structure of PointTransformer, and elaborates on the
Multilayer Feature Fusion Point Transformer (MFF-PT) network structure. Section 4 dis-
cusses experimental parameters, conducts ablation experiments to ensure the effectiveness
of the model, compares it with other algorithms on the custom dataset, and presents the
results. Finally, Section 5 summarizes the innovations and contributions of this research
paper and points out its limitations.

2. A Dataset for Micro Metal Gears Based on MIM

In industrial applications, particularly in the processing of point clouds for specific in-
dustrial parts, professional point cloud datasets are extremely scarce. Precision components,
such as small gears, feature complex geometric shapes and fine surface characteristics,
which pose higher demands on point cloud processing algorithms. Consequently, the
establishment of a dedicated industrial dataset for small gear point clouds becomes partic-
ularly crucial.

2.1. Related Work

Datasets play a crucial role in the field of point cloud deep learning. The training and
validation of deep learning models rely on large, high-quality datasets. These datasets
not only provide a rich array of samples for training models but also reflect the diversity
of data found in the real world. Today, there are many high-quality point cloud datasets
available, such as ModelNet [20], ShapeNet [21], and KITTI [1], as shown in Table 1 below,
which have become cornerstones in the fields of computer vision and point cloud research.
They cover a wide range of complexities, from simple objects to complex scenes, providing
valuable resources for both the academic and industrial communities.

Table 1. Partial point cloud dataset.

Datasets Nature Characteristics

ShapeNet [21] Virtual data Clean, tidy, and labeled
ModelNet40 [20] Virtual data Clean, tidy, and labeled

KITTI [1] Real data Street scene, hollow, irregular, noisy
3DMatch [22] Real data Indoor scenes, RGBD data, divided into training and testing sets

ASL Datasets Repository 1 Real data Architecture, terrain, irregularity, noise
Sydney Urban Objects Dataset 2 Real data Hollow, irregular, and noisy

The Stanford 3D Scanning Repository 3 Real data high quality
1 https://projects.asl.ethz.ch/datasets/ (accessed on 12 May 2024); 2 https://www.acfr.usyd.edu.au/papers/
SydneyUrbanObjectsDataset.shtml (accessed on 12 May 2024); 3 http://graphics.stanford.edu/data/3Dscanrep/
(accessed on 12 May 2024).

https://projects.asl.ethz.ch/datasets/
https://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
https://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
http://graphics.stanford.edu/data/3Dscanrep/
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2.2. Manufacturing of Micro Metal Gears through MIM

Metal Injection Molding (MIM) is an emerging powder metallurgy technology partic-
ularly well-suited for high-volume production of precision micro-sized components. The
specific process flow diagram for this technique is depicted in Figure 1.
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Figure 1. MIM process flowchart.

The Metal Injection Molding (MIM) process primarily consists of four key stages:
mixing and granulating, molding, debinding, and sintering. In these stages, mixing and
granulating is the first and a relatively independent step, which includes several sub-steps
such as premixing of powder, preparation of binder, mixing of powder and binder, and
finally the granulation process. The produced granules, referred to as feedstock, are used
in the second stage of molding; during this molding stage, the feedstock is heated to a
specific temperature to melt it, then injected under pressure into a prepared mold. The
mold should have temperature controls to facilitate demolding and cooling, after which
the parts cool down and are demolded. After this step, the parts are called green parts, at
which point they already possess the complex structures required by the parts.

The third part, the debinding stage, is a unique step in the MIM process, where, due to
the large amount of binder in the formed green parts, about 30% to 50% of the binder needs
to be removed from the blank, which directly relates to the feedstock composition. After
this step, the parts become extremely fragile; however, as the parts contain metal powder,
they do not shrink or collapse.

The final stage, sintering, is crucial for the densification of the parts and differs from
traditional powder metallurgy sintering. In traditional powder metallurgy, pressed parts
already possess a relatively high density and only about 10% of porosity needs to be
eliminated for densification. However, after the debinding process in MIM, up to about
40% porosity remains, leading to significant shrinkage during sintering.

Due to the significant changes in the shape of components throughout the MIM
process, this study will collect point cloud data of the components at each stage of the MIM
process to illustrate these unique transformations.

The experimental subject of the dataset is a spur gear with 17 teeth and a module of
0.5 mm, as illustrated in Figure 2. The specific parameters are outlined in Table 2.
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Table 2. Gear size parameter information.

Parameter Name Parameter Value

Normal Module (mn/mm) 0.5
Number of Teeth (z) 17
Pressure Angle (α/◦) 20

Addendum Coefficient (χ) 0.06
Pitch Circle Diameter (D/mm)) 8.5
Root Circle Diameter (Df/mm)) 7.21
Tip Circle Diameter (Da/mm)) 9.56

Tooth Pitch (pt/mm)) 1.571

To fully reflect the characteristics of the MIM process, this study has designed and
implemented an orthogonal experiment. There are four core process parameters in MIM:
mold temperature, nozzle temperature, injection pressure, and holding time, which can
affect the three-dimensional shape of the gears. The experimental scheme designed for
this study is outlined in Table 3. The production experiments are conducted using the
equipment shown in Figure 3.

Table 3. Experimental plan.

Group Mold Temperature
(◦C)

Nozzle Temperature
(◦C)

Injection Pressure
(Bar)

Holding Pressure
Time (s)

1 80 185 70 0.2
2 80 190 80 0.5
3 80 197.5 100 1
4 80 205 120 1.5
5 80 210 130 1.8
6 90 185 80 1
7 90 190 100 1.5
8 90 197.5 120 1.8
9 90 205 130 0.2
10 90 210 70 0.5
11 105 185 100 1.8
12 105 190 120 0.2
13 105 197.5 130 0.5
14 105 205 70 1
15 105 210 80 1.5
16 120 185 120 0.5
17 120 190 130 1
18 120 197.5 70 1.5
19 120 205 80 1.8
20 120 210 100 0.2
21 130 185 130 1.5
22 130 190 70 1.8
23 130 197.5 80 0.2
24 130 205 100 0.5
25 130 210 120 1
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Moreover, to further diversify the morphological characteristics of gears, various
materials have been selected for gear manufacturing, including but not limited to popular
materials such as 316L and 17-4ph. Additionally, experiments were conducted using each
material with two different shrinkage ratios, contributing to the extended diversity of
the dataset.

2.3. Collection and Processing of MIM Micro Metal Gear Dataset

Due to the need for comprehensive acquisition of gear surface data, an efficient, precise,
safe batch inspection method is required. Traditional contact measurement techniques
generally have a limit of a 0.2 module for measuring gear moduli, whereas non-contact
measurement techniques based on diverse optical principles do not have this limitation.

Among 3D measurement technologies, the structured light projection method stands
out for its high speed and precision. The core advantage of this measurement method lies
in its non-contact nature and high degree of automation. It enables rapid and accurate
measurements without touching the object’s surface, significantly enhancing the efficiency
and reliability of the measurements.

The German GOM ATOS Core three-dimensional optical scanning system, depicted
in Figure 4, is employed for these measurements. The optical 3D scanning measurement
system primarily consists of a high-precision stereo measurement head; an automated
turntable; and the ATOS Professional 2018 measurement software. The equipment setup is
illustrated in Figure 4. The point cloud data acquisition process is outlined in Figure 5.
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It is important to note that before scanning, it is necessary to determine if the surface
of the object being measured has any characteristics, such as reflectiveness, that could affect
imaging. Surfaces that are too smooth require the application of a developer spray. In this
experiment, the developer used is a mixture of 5% TiO2 and 95% anhydrous ethanol, which
is thoroughly mixed and then uniformly sprayed onto the surface of the component. The
results are displayed in Figure 6.

Following the acquisition of raw point cloud data, a data refinement process is em-
ployed, involving trimming and removal of unnecessary planes and point cloud data to
optimize the dataset. Subsequently, the ATOS software is utilized for polygonalization
operations, enabling the generation of refined, non-overlapping triangular mesh data from
the original point cloud data. The data before and after this process are illustrated in
Figure 7. Such operations serve to further enrich the diversity of the dataset. Through
experimental design and software processing, a total of 1101 high-quality point cloud data
points were successfully collected.
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2.4. PointTransformer Basic Principle

Through an analysis of the distinctive features present in the point cloud data of
gears, a rational approach is employed to partition the gear point cloud into four distinct
components: the inner bore, teeth, end face, and noise, as illustrated in Figure 8.
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Due to the fact that each point cloud file typically encompasses over 50,000 points,
and each point cloud dataset requires meticulous segmentation, the process becomes both
intricate and time-consuming. The dataset comprises a total of 1101 distinct point cloud
data points of miniature gears. The visual representation of the dataset is illustrated in
Figure 9.
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3. Methods

Point cloud segmentation is fundamental to understanding point cloud data and holds
significant value across multiple research and application domains. This section introduces
a Multilayer Feature Fusion Point Transformer (MFF-PT) segmentation network, which
aims to enhance the network’s feature extraction capabilities to improve the accuracy of
point cloud segmentation.

In the context of this research, which focuses on small gears, the precision requirements
for different parts of these components vary considerably. For instance, the teeth and inner
holes of a gear are far more critical than the gear’s end face. If important parts can be
segmented early in the process, it can effectively reduce subsequent computational load
and minimize interference, making the segmentation of point clouds critically important.

3.1. Related Work

As hardware and deep learning technologies continue to evolve, numerous models
for processing point cloud data have been proposed. However, the inherent characteristics
of point cloud data, such as being unordered, irregular, and sparse, make its processing
challenging. Techniques developed for 2D data processing cannot be directly applied to
point cloud data due to these differences. Some network models attempt to convert point
cloud data into more structured forms like voxels, clusters, or projections before performing
feature extraction. Although this approach can effectively address some issues, it involves
a preliminary transformation step, which tends to be resource-intensive and can lead to
lower efficiency due to the high demands on memory and computational power.

Networks that process point cloud data directly also exist. Qi and others introduced
PointNet [23], which was among the first to achieve end-to-end learning directly from point
cloud data, using global pooling to directly handle the unordered nature of point clouds;
PointNet++ [24] built on the foundation of PointNet by adding local region processing
to capture more detailed local features. These two methods provide a basic structure for
processing point cloud data, yet they still fall short in handling local details of point clouds;
subsequent developments, such as PointCNN [25] and DensePoint [26], began to explore
how to enhance performance by learning the local structures of point cloud data; to further
improve model performance, researchers proposed several innovative methods. For exam-
ple, GACNet [27] utilizes a graph attention mechanism to automatically learn dependencies
between points, significantly enhancing the network’s ability to parse complex spatial
relationships. On the other hand, KPConv [8] performs convolutions directly on point
clouds by defining learnable convolution kernels, handling multi-scale information, and
providing a flexible method for processing point cloud data; later, PointTransformer [18]
and PCT [28] introduced self-attention mechanisms [29], further enhancing the encoding of
global dependencies in point clouds and optimizing the overall flow of information.

However, despite these advances bringing significant improvements, most networks
still struggle with unclear connections between global and local features in point cloud
data, leading to insufficient consideration of crucial information. Additionally, on specific
applications such as custom datasets for small gears, these models often perform poorly,
possibly due to not capturing fine local features adequately or lacking generalization
capability under extreme conditions. For example, although HANet [30] and EPNet [31]
excel in standard tasks, their applicability in specific small object recognition tasks remains
limited, necessitating further consideration and integration of global and local information
in the design of point cloud data processing networks.

Based on this, the present study builds upon the PointTransformer network, incor-
porating multiple global feature extraction modules to extract features at various levels.
Additionally, an up-and-down sampling module is utilized, which integrates multiscale
contextual information, thereby enhancing the modeling capabilities for complex structured
point clouds.
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3.2. PointTransformer Basic Principle

The Point Transformer (PT) is an early network utilizing self-attention mechanisms
for classification and segmentation in point cloud data. As shown in Figure 10, its network
structure combines the encoder–decoder architecture of the U-Net [32] network, skip
connections, and self-attention mechanism layers (Point Transformer) to aggregate features
of points within both global and local domains.
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3.3. Multilayer Feature Fusion Point Transformer

Building upon the foundation of the Point Transformer, we introduce an enhancement
by incorporating a global feature extraction network with multiscale fusion, resulting in
the Multilayer Feature Fusion Point Transformer (MFF-PT). Additionally, an Up-Down-
Up module is introduced to expand features, aiming to establish enhanced connections
between global and local contextual relationships. The network architecture is depicted in
Figure 11.

This network model preserves the encoder–decoder structure characteristic of the
Point Transformer U-Net class. It comprises three main components: the Local Feature
Encoder, the Global Feature Encoder, and the Decoder. The utilization of the Up-Down-Up
module serves to facilitate improved integration of global and local contextual relationships.
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3.3.1. Local Feature Encoder

The local feature encoder, essentially aligned with the encoder in the PointTransformer
(PT), consists of a stack of Multilayer Perceptron (MLP) modules, Transition Down (TD)
modules, and Point Transformer (PT) modules. This configuration is designed to extract
local features from point cloud data and aggregate local information using a self-attention
mechanism. The stacking of these modules allows the network to utilize a wider range
of contextual information. Specifically, the module begins by expanding the point cloud
features through the MLP, then employs the attention mechanism of the Point Transformer
(PT) module to calculate the relationships between a point and several surrounding points.
Following this, the Transition Down (TD) module performs downsampling, as depicted
in Figure 12a. This process not only enriches the features but also reduces the number of
points, facilitating subsequent operations such as upsampling and skip connections.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 18 
 

  
(a) (b) 

Figure 12. Up-and-down sampling modules. (a) Transition Down unit; (b) upsampling unit. 

 
The PT module’s structure and the Point Transformer layer schematic are displayed 

in Figure 13a. Comprising two linear layers and one PT layer, the module forms a PT block 
using residual connections, as illustrated in Figure 13b. The PT layer, central to the En-
coder, calculates relationships among neighboring points within the local domain of each 
point, obtaining attention vectors. These vectors are then used to aggregate features of 
neighboring points: 𝑦 = 𝜌(𝛾(𝜑(𝑥 ) − 𝜓 𝑥 + 𝛿)) ⊙ (𝛼(𝑥 ) + 𝛿))∈ ( )  (1) 

𝛿 = 𝜃 𝑃 − 𝑃  (2) 

In the Point Transformer network, 𝑦  represents the output feature, and 𝜑, 𝜓, and 𝛼 are per-
point feature transformations, such as MLPs. 𝛿 is a normalization function like softmax, and 𝛾 is 
an MLP layer. Positional encoding, crucial for attention generation and feature transformation, is 
calculated using the three-dimensional coordinates 𝑃  and 𝑃  of two points, with 𝜃 being an MLP 
layer. The positional encoding function plays a key role in the attention mechanism, significantly 
impacting feature transformation. 

  
(a) (b) 

Figure 13. Point Transformer block structure. (a) Point transformer layer; (b) Point transformer 
block. 

3.3.2. Global Feature Encoder 
The Global Feature Encoder refines the number of points in the point cloud while preserving 

features, through multiple iterations of Farthest Point Sampling [33] (FPS). After each FPS, fea-
tures are extracted using MLP. An Up-Down-Up (UDU) expansion unit enhances the point cloud 
features and generates new point data. The data, post-multiple layers of FPS and completion, have 

FPS

kNN, MLP

Local max pooling

Input: (x,p1)

Output: (y,p2)

Input: (x,p1)

Output: (y,p2)

FPS

kNN, MLP

Bilinear Interpolation

, : lin ea rϕ ψ :mlpδ : linearα

Aggregation

Output: 
(y,p)

Input: 
(x,p)

:mlpγ

Linear

Point Transformer

Linear

Input: (x,p)

Output: (y,p)

Figure 12. Up-and-down sampling modules. (a) Transition Down unit; (b) upsampling unit.



Appl. Sci. 2024, 14, 4271 11 of 17

The PT module’s structure and the Point Transformer layer schematic are displayed
in Figure 13a. Comprising two linear layers and one PT layer, the module forms a PT
block using residual connections, as illustrated in Figure 13b. The PT layer, central to the
Encoder, calculates relationships among neighboring points within the local domain of
each point, obtaining attention vectors. These vectors are then used to aggregate features
of neighboring points:

yi = ∑
xj∈x(i)

ρ
(
γ
(

φ(xi)− ψ
(

xj
)
+ δ

))
⊙

(
α
(
xj
)
+ δ

)
) (1)

δ = θ
(

Pi − Pj
)

(2)

In the Point Transformer network, yi represents the output feature, and φ, ψ, and α
are per-point feature transformations, such as MLPs. δ is a normalization function like
softmax, and γ is an MLP layer. Positional encoding, crucial for attention generation and
feature transformation, is calculated using the three-dimensional coordinates Pi and Pj of
two points, with θ being an MLP layer. The positional encoding function plays a key role
in the attention mechanism, significantly impacting feature transformation.
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3.3.2. Global Feature Encoder

The Global Feature Encoder refines the number of points in the point cloud while
preserving features, through multiple iterations of Farthest Point Sampling [33] (FPS).
After each FPS, features are extracted using MLP. An Up-Down-Up (UDU) expansion unit
enhances the point cloud features and generates new point data. The data, post-multiple
layers of FPS and completion, have identical shapes. They are merged and processed
through the LBR (Linear, Batch Normalization, ReLu) module, followed by Max Pooling for
initial global feature extraction. The structure, similar to the Local Feature Encoder, includes
a six-layer Encoder to further expand context and extract global features, as illustrated in
Figure 11.

Figure 14 depicts the schematic of the Up-Down-Up (UDU) module, inspired by the
point cloud completion network Pu-gan [19]. The UDU module initially uses MLP to enrich
features, producing F1. It then undergoes an upsampling and a downsampling process
to obtain F2 and F3, respectively. Subsequently, the difference ∆1 between F1 and F3 is
calculated. ∆1 is then upsampled to obtain ∆2. Finally, ∆2 and F2 are merged to yield the
final output. This method of upsampling effectively avoids overly complex training steps
while efficiently increasing the number of effective point clouds.
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3.3.3. Decoder

The Decoder, divided into two similar blocks, as depicted in Figure 11 is designed for
extracting both global and local features. It consists of alternating Transition Up blocks and
PT blocks, with the integration of Skip Connections. These connections link the Encoder’s
features to the downsampled features, recapturing details lost in the downsampling process.
This procedure is repeated until the point cloud returns to its original form, a notable feature
of the U-Net network. The Decoder adeptly fuses the point cloud’s inherent information
with the encoded context, methodically reconstructing and generating a high-quality,
complete point cloud. Distinct from the Encoder, the Decoder includes additional Skip
Connection attention layers, which are crucial for effective point cloud reconstruction. The
Transition Up unit, as shown in Figure 15, leverages the Encoder’s features for upsampling
operations.
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After decoding through the Decoder, global features undergo another round of Max
pooling for extraction. Following the approach of PointNet, these global features are
concatenated to each local feature to facilitate point cloud segmentation operations, as
illustrated in Figure 11. This method ensures that global context is effectively integrated
with local details, enhancing the accuracy and effectiveness of the segmentation process.

4. Results and Discussion
4.1. Experimental Parameters

The experiments were conducted on a system equipped with an Intel i7-13700K CPU
(Intel, Santa Clara, CA, USA), NVIDIA GeForce RTX 4090 GPU (NVIDIA, Santa Clara, CA,
USA), running Microsoft Windows 11 Pro, with 16GB*2 DDR5 memory, using Pycharm as
the integrated development environment. The CUDA version employed was 11.8, along
with PyTorch version 1.9.0.

4.2. Point Cloud Component Segmentation Result Analysis

To verify the performance of the MFF-PT network in component segmentation, ex-
periments were conducted using this network on the self-built dataset. The evaluation
metric used was the mean Intersection over Union (mIoU), which calculates the IoU for
each category and then takes the average of all category IoUs. The results are displayed in
Figure 16.
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As depicted in the figure, after 600 training epochs, the original PT network began to
converge around 300 epochs, while the improved MFF-PT network showed a convergence
trend near 200 epochs. The MFF-PT network achieved an mIoU of 86.3%, compared to
85.2% for the PT network at the same number of epochs, marking an improvement of 1.1%.
This indicates that the modified MFF-PT network has stronger learning capabilities on the
custom micro-gear point cloud dataset than the original model.

4.3. Ablation Experiment

To further verify the effectiveness of the network, an ablation study was designed, as
shown in Table 4. Since the MFF-PT, compared to the original PT network, primarily adds
multiscale fusion for global feature extraction and an Up-Down-Up point cloud expansion
module, the ablation study was organized into five groups.

Model A is the original PT model, serving as the control group.
Model B includes an added pathway of Farthest Point Sampling (FPS), MLP, and a

stacked upsampling module (FMU). After FPS, the number of points is halved, but because
the Down-Up-Down (DUD) module’s comparison is for subsequent models (like Model D),
another form of upsampling was necessary. Therefore, the upsampling method from the
DUD module was used, which involves computing k-nearest neighbors and performing
bilinear interpolation, as depicted in Figure 12b (upsampling unit). Due to having only one
pathway of FMU, the max pooling operation is omitted.

Model C is similar to Model B but includes two FMU pathways, hence requiring the
first max pooling operation.

Model D is essentially the same as Model C but includes three FMU modules.
Model E employs the DUD model, which corresponds to the MFF-PT model.

Table 4. Ablation experiment.

Method 1FMU 2FMU 3FMU UDU mIoU

A 85.2
B

√
85.3

C
√

85.5
D

√
85.7

E
√ √

86.3

Table 4 shows that adding FMU modules indeed improves segmentation precision,
but the degree of improvement is significantly related to the number of modules. A single
FMU module increases mIoU by only 0.1%, possibly due to the absence of subsequent
Max-Pooling, leading to poor global feature extraction. However, adding multiple FMU
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modules can substantially enhance mIoU, with three modules achieving a 0.5% improve-
ment. Replacing the upsampling module with the UDU module also contributes a 0.6%
increase in the model’s mIoU. This improvement is attributed to the UDU module’s ability
to effectively increase the number and features of newly generated point clouds through its
multiple upsampling and downsampling processes.

4.4. Comparison with Existing Methods

To validate the effectiveness of the MFF-PT in comparison with classic networks, the
study involved training and testing on a custom point cloud dataset using PointNet [23],
PointNet++ [24], AGCN [34], DTNet [35], PRA-Net [36], PointTransformer [18], and FMM-
PT, as illustrated in Table 5 and Figure 17. It was found that, generally, all networks
performed worse on the custom dataset compared to their performance on the ShapeNet
dataset. PT, PRA-Net, DTNet, and ours showed relatively better performance.

Table 5. Performance of various algorithms on self-built datasets.

Method mIoU

PointNet [23] 83.4%
PointNet++(msg) [24] 84.2%

AGCN [34] 84.5%
DTNet [35] 84.9%

PRA-Net [36] 85.3%
PointTransformer [18] 85.2%

Ours 86.3%
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To further validate the effectiveness of the network proposed in this study, multiple
rounds of training and testing were conducted, with the network compared repeatedly
against the next best performing networks, PRA-Net and Point Transformer. The results
of these comparisons are shown in Figure 18. It was consistently found that MFF-PT
performed better in each instance.
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4.5. Limitations and Future Work

While the segmentation algorithm has shown improvements on the custom dataset,
there remains room for further enhancement. For example, the use of a multiscale fusion
structure has resulted in longer training times compared to the original network. Future
plans include optimizing the downsampling methods and refining the Point Transformer
layer structure to improve processing speed.

Additionally, the current limitation of having only one gear model due to the reliance
on specific molds for Metal Injection Molding (MIM) hinders the generalizability of the
model. New molds are already in production to manufacture two types of spiral bevel
gears, aiming to enrich the dataset and enhance the model’s robustness.

Plans are also in place to use the supplemented point cloud dataset for designing
operations such as point cloud completion and registration. The goal is to optimize
industrial production processes and parameters using deep learning methods, further
integrating advanced technologies into the manufacturing sector to improve efficiency and
product quality.

5. Conclusions

This study addresses the segmentation of point clouds for industrial small preci-
sion components by constructing a custom dataset containing 1101 small gear models.
This dataset was obtained through a complete Metal Injection Molding (MIM) process
and orthogonal experiments, ensuring it adequately reflects the characteristics of the
MIM process.

Based on this dataset, a multiscale feature fusion Point Transformer network was
proposed, which enhances the modeling capabilities for complex structured point clouds by
incorporating global feature extraction modules and an upsampling module. Experimental
results indicate that the proposed method achieves significant improvements over the
original network, with evaluation metrics confirming its effectiveness and superiority.

The dataset and algorithm developed in this study are not only technical achievements
but also lay a foundation for future research using deep learning point cloud data process-
ing techniques in industrial production. However, both the dataset and the point cloud
segmentation algorithm have limitations. The dataset should include more types of gears,
and the segmentation algorithm should be further optimized to improve training efficiency
and adapt to a broader range of gear point cloud data.

Looking forward, we plan to expand the dataset to accommodate all common types of
gears and upgrade the segmentation algorithm by optimizing its modules to ensure more
efficient training. Additionally, by fully utilizing the dataset, networks such as point cloud
completion and registration will be designed, aiming to further promote the application of
point cloud data in industrial production.
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In summary, our dataset and segmentation algorithm have achieved significant
progress, overcoming longstanding challenges and opening new avenues for the application
of point cloud data. We will continue to advance research in this field.
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