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Abstract: Automatic detection of tire defects has become an important issue for tire production
companies since these defects cause road accidents and loss of human lives. Defects in the inner
structure of the tire cannot be detected with the naked eye; thus, a radiographic image of the tire
is gathered using X-ray cameras. This image is then examined by a quality control operator, and a
decision is made on whether it is a defective tire or not. Among all defect types, the foreign object
type is the most common and may occur anywhere in the tire. This study proposes an explainable
deep learning model based on Xception and Grad-CAM approaches. This model was fine-tuned and
trained on a novel real tire dataset consisting of 2303 defective tires and 49,198 non-defective. The
defective tire class was augmented using a custom augmentation technique to solve the imbalance
problem of the dataset. Experimental results show that the proposed model detects foreign objects
with an accuracy of 99.19%, recall of 98.75%, precision of 99.34%, and f-score of 99.05%. This study
provided a clear advantage over similar literature studies.

Keywords: tire defect detection; foreign object detection; deep learning; XAI; tire X-ray; Grad-CAM

1. Introduction

The global rise in the human population increases the need for various modes of
transportation, including automobiles, buses, and trucks. This particular circumstance
pushes numerous manufacturing facilities to play a role in the production of a crucial
component for automobiles, namely, the tire. However, it is important to note that the
annual return rate of defective tires is at 7 percent of the total tire production size, leading
to a yearly restitution amounting to USD 100 million [1]. To minimize the number of
tire returns, it is necessary to implement quality-inspection procedures that involve the
utilization of X-ray imaging for the detection of defects in tires.

Non-destructive testing (NDT) methods, such as radiographic X-ray testing, have been
instrumental in identifying latent defects in tires. Following tire production, each tire un-
dergoes an X-ray inspection to create images that facilitate rapid and reliable interpretation.
These images are then evaluated by quality control operators, who categorize tires as non-
defective or defective. In Figure 1, examples of a non-defective (perfect) tire obtained from
the X-ray device are presented. While some defects are identifiable through computer-aided
demarcation lines, detecting foreign objects with the naked eye proves challenging. Such
objects often vary in size and properties, making detection even more arduous, particularly
during periods of operator fatigue. Furthermore, the process is inherently subjective and
characterized by inefficiency, time consumption, and potential bias, necessitating a significant
degree of concentrated effort [2].
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Figure 1. X-ray images of the non-defective tires.

With the development of technology, artificial intelligence has been used in au-
tonomous vehicles, quality control processes, and many similar areas of car technology [3].
In recent years, the field of deep learning (DL) has undergone significant advancements that
have led to innovative solutions for numerous industrial challenges, including tire defect
detection problems. DL techniques aim to categorize images by extracting meaningful
features from the images.

In many datasets, especially datasets taken from industrial applications, it is difficult
to obtain sufficient labeled data from each class. In such cases, pre-trained transfer learning
(TL) models can enhance performance with less labeled data by benefiting from the experi-
ences gained during the training phase. Thus, rather than training a model from scratch, the
model previously trained on a comprehensive dataset using TL methods could be applied
to another dataset. AlexNet, VGG, ResNet and Xception, DenseNet and their variations,
and TL approaches are some of the most frequently used methods [4]. TL techniques can be
applied in two ways. First, the TL model can use the weights obtained with the ImageNet
dataset to extract features. It learns general data features and patterns from this dataset.
These features can be used because they provide better generalization across different but
similar tasks. Secondly, it is fine-tuned with a new dataset and transformed into a model
suitable for that dataset [5]. In the examination of models in the literature, the Xception
model demonstrated better accuracy in the classification task with the ImageNet dataset,
with fewer parameters than many other deep learning models [4].

While DL has demonstrated remarkable success in various real-world applications [6,7],
its inherent stochastic nature can undermine trust in its outcomes. To enhance reliability, there
is a critical need to elucidate DL models’ decisions, ensuring transparency and fostering trust
in their results. Thus, the concept of Explainable Artificial Intelligence (XAI) has become
increasingly important in the domain of DL [8–12].

XAI seeks to enhance the transparency and reliability of the results produced by
artificial intelligence (AI) systems by offering visual explanations in the form of heatmaps
generated through techniques such as Grad-CAM [13]. Visually presenting incorrect or
unexpected decisions of the model with Grad-CAM provides the opportunity to evaluate
the validity of the model’s accuracy and make corrections when necessary. At the same time,
by seeing which visual features the model focuses on, it can be understood how decisive
these features are. Grad-CAM visualizes the decisions of a pre-trained transfer model,
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allowing interpretation of how well the model can generalize across different tasks. In the
context of tire defect detection, transparency is of utmost importance in establishing trust
among quality control operators, regulatory bodies, and other stakeholders. Understanding
how and why an AI system arrives at a particular defect classification is essential for the
acceptance and adoption of such systems in the tire manufacturing industry [8].

XAI serves as a valuable tool for tire quality control professionals by providing them
with insights into the rationale behind the AI system’s defect determinations [13]. By offer-
ing interpretable explanations through Grad-CAM, XAI empowers operators to validate
and verify the decisions made by AI models, thereby aiding them in making well-informed
judgments about the tire’s quality. This support not only improves the overall efficiency of
defect detection but also provides operators with a deeper understanding of the factors
that influence the AI system’s output.

• This paper introduces a novel approach to detecting foreign objects in tire radiographic
X-ray images using an Xception-based deep learning network.

• The proposed method demonstrates high efficiency in identifying foreign objects in
defective tire images, with a primary focus on building a comprehensive tire foreign
object dataset.

• Furthermore, the proposed detection model is investigated using the Grad-CAM
method to provide a comprehensive interpretation of the decisions made.

• By analyzing the interaction between AI models and a wide range of tire defect images,
we seek to provide a more comprehensive understanding of both the capabilities and
limitations of AI-powered tire defect detection systems in industrial settings.

• For this study, an original dataset is obtained from a global tire manufacturer located
in Kocaeli, Türkiye.

• This research contributes to the tire manufacturing industry’s efforts to leverage
cutting-edge technology for improving quality control processes and ensuring the
production of safer and more reliable tires.

The rest of this paper is designed as follows. Section 2 briefly presents the related
works. Section 3 presents the methodology and dataset of this study. Section 4 shows and
discusses the experimental results. Section 5 presents the conclusions.

2. Related Works

The adoption of machine learning methods for automatic tire defect detection has
gained popularity, with various algorithms and approaches explored. A study conducted
by us [1] focused on tire classification using basic machine learning classifiers such as the
SVM (Support Vector Machine), and kNN (k-Nearest Neighbors) , ANN (Artificial Neural
Network), and texture features, achieving approximately 99% accuracy.

While limited, the literature contains some notable studies concentrating solely on
foreign object detection. For instance, the authors of [2] proposed a wavelet multiscale
representation method to detect the defect of the tires from 400 radiographic images. They
achieved 96.9% detection accuracy with the selection of the optimal scale and threshold
parameters of defect edge detection.

In [14], an end-to-end tire defect detection method was proposed with the combination
of an optimized Semantic Segmentation Network and a compact CNN classifier. They
used 3234 test images with four different defect types and achieve 96.5% classification
accuracy. The authors used texture segmentation based on the Gabor filter and fuzzy
c-means clustering to decrease the computation complexity.

In Ref. [15], the authors proposed a TireNet model by using the Siamese network
with some modifications. They preprocessed images as object and nonobject images to
improve learning models. The classification model is generated by a Siamese network and
weighted cross-entropy loss. The final model is fine-tuned with a balanced threshold. The
experimental results were obtained for a total of 120,000 images with 20,000 defective tire
images.
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In Ref. [16], an unsupervised approach is proposed to avoid labeling the defective
images. The authors augmented the images with a Generative Adversarial Network (GAN)-
based method. The features of the non-defective tire images were extracted, and these
features were used for image reconstruction. The network memorized these features,
and when a defective image was input into the generator, the difference between the
features could be detected. This method achieved 79.8% accuracy with a training set of
20,000 defect-free images and a test set of 2077 defective and 3947 defect-free images.

The authors of [17] proposed a Faster RCNN network based on the feature pyramid
network to detect tire bubble defects. Their model contains four parts: the backbone, Tire
Feature Pyramid Network, region proposal, and region prediction. Experimental results
were evaluated with mean average precision and average precision. The model obtains
better results than the classical feature pyramid network.

In Ref. [18] a class-level, weighted, partial domain adaptation network-based defect
detection method is proposed for five different defect types (namely, impurity, bubble,
slack, bend, and overlap). An average accuracy of 95.07% was obtained with the defective
tire dataset. The same authors present a Transferable Swin Transformer-based method [19]
for tire defect detection under domain shift conditions. The Swin Transformer is used as
the feature extractor for all the images. This model exhibits 96.17% average accuracy.

In Ref. [20] a pixel-level defect detection method based on transformers is proposed.
This method detects the type of defect as well as the geometric shape of the defect. The
experimental results were obtained with 1450 tire images that contain the six types of
defects: Tread and Sidewall Foreign Matter, Tread and Sidewall Core Cracking, Sidewall
Core Overlapping, and Sidewall Bubbles.

In another study [21], the authors augmented an imbalanced dataset with the Wasser-
stein Generative Adversarial Network (WGAN). The new balanced dataset was classified
with transfer learning methods, and the best classification accuracy obtained with the
ResNet model was 95.92%.

3. Materials and Methods
3.1. The Proposed Framework

Figure 2 visualizes the framework designed for tire defect detection and classification.
The frameworks possess five stages, namely, data collection and labeling, preprocessing
techniques, data augmentation, data splitting, training the model, and finally testing and
evaluating the trained model on unseen images. The seamless integration of these clearly
stated stages enables the framework’s durability, reliability, and efficacy in attaining its
intended goals with superb accuracy and confidence.

Figure 2. Theproposed tire defect detection framework.
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3.2. Dataset Collection and Labeling

The defective tire dataset for this study was collected from the Pirelli Automobile
Tyre Factory, which is a global tire manufacturer located in Kocaeli, Türkiye. Radiological
tire X-ray images were obtained from X-ray devices (Tire-X 3000 system, Alfautomazione,
Lissone, Italy). An advanced tire X-ray examination machine was used to create the dataset
which was shown in [4]. The diode and the receiver are the two primary parts of the
technology used in X-ray machines. Because this setup is housed in a lead-lined chamber
to prevent radioactive leakage, it provides the maximum level of safety possible during
operation. When the cabin door is closed, a high voltage is supplied to the internal diode,
which releases X-rays. The cabin is sealed closed as soon as the tire enters the chamber,
starting an exact 360-degree spin. Following the same principles as medical X-ray devices,
a U-shaped receiver outside the tire records the resulting X-ray image. The diode ensures
operational efficiency and safety by controlling temperature using a water-cooling system.
The length of the inspection process varies based on tire diameter and is typically one
minute. To maintain the highest standards of honesty and quality, quality professionals can
extensively study tire X-ray images due to the device’s interaction with a computer–user
interface.

All images are labeled as defective or non-defective with the assistance of their expert
quality control operators. We collected 2303 defective tire X-ray images and 49,198 non-
defective tire images. The dataset used in this study contains several tire textures for
different traffic modes and densities. The resolution of the collected images varied due to
the wide range of tire shapes and sizes. To standardize the input, each image was resized
to a resolution of 299 × 299 × 3 and normalized by dividing the pixel value by 255. Some
examples of defective tire images are given in Figure 3. These are long images of tires, such
as the images in Figure 1, but in Figure 3 only the defective part of each image is shown,
and the foreign objects zones are enclosed in green rectangles.

Figure 3. X-ray images of defective tire parts showing the foreign objects.

3.3. Dataset Augmentation

To address the class imbalance in our dataset, we used custom systematic augmenta-
tion techniques like shifting and illumination changes specifically for the “foreign object”
class. This enriched the data and made them more representative of real-world scenarios,
ensuring better model performance in detecting foreign objects under various lighting and
spatial conditions. By applying shifting techniques, we introduced small translations to
the images in the “foreign object” class. This approach not only increased the diversity of
the samples but also made the model more invariant to spatial transformations, enabling it
to recognize foreign objects regardless of their location within an image. In addition, we
employed illumination change techniques to vary the lighting conditions in the images of
the “foreign object” class. Other augmentation elements, aside from vertical shifting and
brightness adjustment, were considered unsuitable for this application because of their
inability to correctly recreate real-world conditions. For example, flipping images along the
vertical or horizontal axes may cause severe distortion and shatter the coherence of layers
and stripes. As a result, such augmentation strategies may cause the model to learn pat-
terns that do not correspond to real-world conditions, resulting in unwanted outcomes. In
conclusion, it is critical to prioritize augmentation strategies that closely mimic real-world
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events observed in tire manufacturing operations to ensure model robustness and general-
izability. Thus, in this work, we thoroughly analyzed many various augmentation methods
and only retained those that were certified by manufacturing operators and specialists.

Table 1 summarizes the number of images in the dataset before and after augmentation.
This augmentation method improved the model’s ability to handle varying lighting condi-
tions, making it more robust and adaptable to different environments. The combination of
these systematic augmentation techniques allowed us to enrich the “foreign object” class
with synthetic yet realistic data, which addressed the imbalance issue and facilitated the
model’s learning process.

Table 1. Datasetsize before and after augmentation.

Class Before Augmentation After Augmentation

Defected 2303 36,841
Not defective 49,198 49,198

3.4. AI Model Training

The framework of this study is based on the Xception model with model fine-tuning for
our specific problem, which is foreign object detection [22]. Fine-tuning the model is crucial
when using a model that is trained to solve different tasks. Fine-tuning in this study was
implemented by substituting the last fully connected layer with a separable convolutional
layer followed by a global average pooling layer and employing the Sigmoid function
in the last 1-neuron fully connected layer for prediction. This successfully diminished
the parameter count and thus, streamlined the model’s complexity. Additionally, batch
normalization was employed to uphold data distribution, resulting in enhanced model
performance. Table 2 shows the architecture of the proposed model. The final output
shape of the proposed model is “1”, representing the defect index. The total number of
parameters is 25,084,457, of which 25,025,833 are trainable and 58,624 are non-trainable.
The model was trained on 90% of the dataset for 30 epochs with the Adam optimizer and a
batch size of 16. Given the large size of our training dataset and the limits imposed by our
devices, we did not need to focus on the more advanced tuning of the hyperparameters for
using any other optimization algorithms. So, we used the same hyperparameters of our
previous study, which used the Xception model to detect COVID-19 [23].

Table 2. The proposed model architecture.

Layer Type Output Shape Number of Parameters

Input 299 × 299 × 3 0
Xception 10 × 10 × 2048 20,861,480

Separable Convolution 10 × 10 × 2048 4,212,736
Batch Normalization × 10 × 2048 8192

Global Average Pooling 2048 0
Dense 1 2049

3.5. Evaluation Criteria

The proposed model was tested and evaluated using the validation set. The evaluation
was conducted using common performance metrics, namely, accuracy, precision, recall,
and F1-score. These metrics were calculated using the outcomes of the confusion matrix. To
justify and provide more insights into the results, heatmaps using the Grad-CAM technique
were included for each class. These heatmaps offer a visual representation of the key areas
within the tire image that influenced the AI model’s defect detection.

3.6. Learning and Execution Environment

Experiments using the proposed method were conducted on an impressive worksta-
tion equipped with an Intel Core i7-11700 CPU, Intel, Santa Clara, CA, USA clocked at
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2.50 GHz, a powerful NVIDIA GeForce RTX 3060 Ti GPU, NVIDIA, Santa Clara, CA, USA,
and 16 GB of RAM, ensuring sufficient processing power for our research tasks. Utilizing
the numerous advantages of TensorFlow v2.13.0, a cutting-edge deep learning framework,
we completely trained and evaluated our models to achieve optimal performance. This
work was made simpler by the user-friendly Spyder IDE 5.1.5, which operated seamlessly
within an Anaconda environment integrated with Python 3.7.10. Furthermore, our work-
station operated on the advanced Windows 11 operating system, providing a reliable and
efficient environment for our research.

4. Experimental Results

The dataset was split into 90% for training and 10% for testing according to the
standard splitting ratio for large datasets [24]. All performance results of the model’s
evaluation for the 10% validation set are presented in Table 3. The performance evaluation
criteria used are accuracy, precision, recall, and F1-score. These metrics were used as
defined in [25,26]. From the table, we can observe that the model successfully achieved an
accuracy of 99.19%, recall of 98.75%, precision of 99.34%, and an F1-score of 99.05. These
results show that the model is capable of detecting and classifying the defective tires from
the non-defective ones.

Table 3. The performance results of the proposed model.

Metric Prediction Result

Accuracy 99.19%
Recall 98.75%

Precision 99.34%
F1-Score 99.05%

The experimental setup with the convergence rate plots was established, adding recall,
precision, and F-score for the training and testing (validation) datasets. The convergence
curves, which are a graphical representation that depicts the progression of the loss and
accuracy over successive epochs during the training of the model, are illustrated in Figure 4.
The curve illustrates the effectiveness of training and highlights potential issues like over-
fitting that might arise during the training process, providing an initial view of the model’s
performance [27]. The curves summarize that through training epochs, the model shows a
steady increase in accuracy and a decrease in loss, signifying that the model is learning and
adapting to the patterns in the data. As the model approaches the final epochs of training,
the curves start to display a slight upward slope with a small increment in accuracy and
decrement in loss.

During the validation stage, on the other hand, we observed some fluctuations in the
model’s performance with the validation set as it trained. This behavior is typical, indicating
that the model starts to capture significant features from the data and is transitioning from
a state of randomness to one of structured learning. The number of epochs was limited to
30 epochs since we observed no further improvements in the model’s performance.

The classification results of the proposed model are depicted in Figure 5 as a confusion
matrix. The positive class is considered the defective tires, and the negative class is the
non-defective tires. As the confusion matrix illustrates, 3639 defective tires were correctly
classified out of 3685, with 46 being misclassified as non-defective. Similarly, 4897 non-
defective tires were correctly classified out of 4921, with only 24 misclassifications. In this
study, when defect-free tires were found to be defective, they could be re-examined and
found to be defect-free. However, if defective tires are found to be defect-free, factories
can put them on sale. It is therefore important to see that 3639 of the 3685 defective tire
samples were classified correctly. This indicates that the model can minimize significant
errors in real-world scenarios. Furthermore, the model’s success in correctly identifying
defect-free tires is noteworthy. For example, 4897 out of 4921 defect-free tire samples were
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correctly classified, indicating that the model is generally robust in correctly distinguishing
defect-free samples.

Figure 4. Convergence rate of the proposed method.

Figure 5. Confusion matrix of the proposed model.
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In Figure 6, we observe heatmaps of two tires, one that is non-defective and the other
that is defective. These heatmaps show a prominent and vibrant red area around a specific
region of the tire, precisely where the tire’s sidewall and tread layer meet. This area is
defined as a point where features that may be decisive in terms of the structural integrity
or performance of the tire are located. The AI model appears to make more use of this area
when detecting the characteristics of this particular region and determining the weight of
this region in the classification. With this method, it is seen that the AI has captured a weak
point or an important feature in the structure of the tire within this red region. With this
figure, the decision-making mechanism of the model in the classification process and the
priority order of the features are better understood. This intense coloration signifies that
the AI model placed significant emphasis on this region when classifying the tire.

Upon closer inspection of the defective tire, we identify a small foreign object inside the
red area. This small but critical defect, nearly imperceptible to the human eye, is precisely
what the AI model detected and highlighted through the heatmap. This interpretation pro-
vides quality control operators with a clear understanding of why the AI system classified
the tire as defective, enabling them to take appropriate action and ensure the production of
safer and higher-quality tires. Table 4 presents a comparison with related studies in the
literature. When compared with these similar works, our method has significant accuracy
performance. During the testing, the proposed model demonstrates exceptional efficiency,
with a testing time of 0.00919 seconds per image and an average frame rate of 108.84 frames
per second (FPS). Furthermore, the training time per epoch is 333 seconds, indicating the
speed and effectiveness of the model.

Figure 6. The heatmap using Grad-CAM of a non-defective tire (on the left) and a defective tire
(on the right).
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Table 4. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Study Method Dataset Image Capturing
Technology

Number of Defect
Types Evaluating Metrics

[2] Wavelet Multiscale 200 defective and 200
defect-free images X-ray 4 Success rate: 96.9%

[14] Concise-SSN
2766 defective and

234 defect-free
images

X-ray 4
mPA: 85.13%, mIoU:

77.34% Average
accuracy: 96.5%

[15] Siamese Network 20,000 defective and
100,000 defect-free X-ray 61-81 Recall: 98.3–57.7%

Precision: 96.2–93.8%

[16]
Memory-Augmented

GAN-Based
Anomaly Detection

23,947 defective and
2077 defect-free

images
X-ray 21 AUC: 87.3%

[17]
Feature

Pyramid-Based
Faster RCNN

463 defective images Phase Shearing
Speckle Interference 1 mAP: 51.86% AP:

92%

[18]

Class-Level,
Weighted, Partial

Domain Adaptation
Network

500 defective and 100
defect-free images X-ray 5 Average accuracy:

95.07%

[19] Transferable Swin
Transformer

500 defective and 100
defect-free images X-ray 5 Average accuracy:

96.17%

[20] Dual-Path
Transformer 1450 defective images X-ray 6 Accuracy: 98.57%

mIoU: 85.56%

[21] Wasserstein GAN 600 defective and 200
defect-free images X-ray 4 Average

accuracy:95.92%

[4] Transfer-Learning-
Based Methods

3366 defective and
20,000 defect-free

images
X-ray 15

Recall: 73.7%
Precision: 88 %
F1_score: 80.2%

Accuracy: 94.75%

[8]
Explainable

Attention-Based
Fused CNN

38,710 defective and
83,985 defect-free

images
X-ray 15

Recall: 86.85%
Precision: 98.5%
F1_score: 92.31%
Accuracy: 95.40%

Proposed Study
XAI-Powered
Xception and
Grad-CAM

2303 defective and
49,198 defect-free

images
X-ray 1

Recall: 98.75%
Precision: 99.34%
F1-Score: 99.05%

Accuracy: 99.19%

5. Conclusions

In brief, this study introduces a novel approach to detecting tire defects, with a specific
emphasis on the identification of foreign objects in radiographic X-ray pictures. The
proposed approach utilizes a deep learning network based on Xception architecture and
heatmaps generated by Grad-CAM to achieve both efficiency and accuracy in identifying
foreign objects. The development of a comprehensive dataset on foreign objects in tires
enhances the robustness of our methodology.

This work undertakes a thorough examination to gain a comprehensive understanding
of the capabilities and limitations of AI-powered tire defect detection in real-world environ-
ments. The experimental results demonstrate the exceptional performance of our model,
with an accuracy of 99.19%, recall of 98.75%, precision of 99.34%, and f-score of 99.05%.
The incorporation of Grad-CAM into the system improves visibility, hence facilitating the
process of making quality control decisions.

The results of this study not only contribute to the progress of AI-supported tire fault
identification but also establish novel benchmarks for quality assurance within the tire
manufacturing sector. The utilization of Grad-CAM in the process of continuous refinement
holds the potential to enhance the accuracy of detecting systems to a greater extent. This
phenomenon highlights the tire industry’s dedication to the manufacture of safer and more
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reliable tires. However, it is crucial to acknowledge that our work has limitations. We
only addressed one kind of tire fault because of its popularity, but future research will
look into other defect types to develop a more comprehensive model. Furthermore, our
future research efforts will focus on creating a comprehensive system that integrates defect
detection with automated decision-making processes, with the goal of increasing efficiency
and accuracy in tire manufacturing operations.
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