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Abstract: The efficient scheduling of resources within emergency departments (EDs) is crucial to
minimizing patient length of stay (LoS) times and maximizing the utilization of limited resources.
Reducing patient wait times can enhance the operation of emergency departments and improve
patient satisfaction and the quality of medical care. This study develops a simulation model using
Discrete Event Simulation (DES) methodology, examining six resource scheduling policies that
consider different combinations of general and senior physicians. By leveraging six scheduling
policies and machine learning techniques, this model dynamically identifies the most effective
scheduling policy, based on a comprehensive dataset of ED visits in South Korea. The ED simulation
achieves an accuracy rate of 90% and demonstrates that our proposed integrated machine learning
approach reduces average length of stay (LoS) to approximately 322.91 min, compared to 327.10 min
under traditional methods. This study underscores the potential of integrating DES and machine
learning to enhance resource management in EDs.
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1. Introduction

Emergency Departments (EDs) play a pivotal role in enhancing the quality of health-
care services within hospitals [1,2]. However, effectively allocating essential resources such
as doctors, nurses, and equipment in the unpredictable and often chaotic environment of
overcrowded EDs remains a complex challenge [3]. Traditional mathematical approaches
often fall short in dynamically describing the relationships among resources and adapting
to changes, making them a major cause of extended patient resident time (length of stay:
LoS) [4–6].

Patient wait time and LoS are critically important in urgent medical situations, such
as surgeries [7,8], and are influenced by various factors including treatment time, hospital-
ization duration, and decision-making processes [9]. The LoS to receive treatment directly
impacts the overall duration of their stay in the ED: the shorter the wait times, the shorter
the total stay [10,11]. Thus, there is a demand for scheduling strategies that can effectively
reduce LoS.

Simulation has proven to be an effective tool for improving complex systems such as
medical processes and EDs, effectively addressing the challenges of resource management
and irregular patient arrivals [12–14]. Research predominantly focuses on utilizing Discrete
Event Simulation (DES) and advances in the field of data science [6,15–18]. Most studies
aim to strategically determine how many additional resources are needed to alleviate
the bottlenecks caused by patient congestion [19,20]. However, realistically, increasing
resources is challenging due to financial constraints [21], necessitating research focused on
optimizing existing personnel and equipment resources. Studies on constrained resource
scenarios are increasingly focusing on personnel resource scheduling [22].

Research on scheduling medical staff in EDs remains limited. This study empha-
sizes utilizing existing physician resources to address scheduling challenges. Moreover,
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traditional resource scheduling often relies on seasonal or past data [23], which is insuf-
ficient due to the unpredictable nature of patient demand. Therefore, flexible research
that considers real-time ED conditions is required. Differences in physicians’ experience
can influence treatment times, offering a potential to reduce wait times. Consequently,
a resource scheduling approach based on the sudden influx of patients and the varying
experience of physicians is needed. Moreover, optimizing scheduling requires machine
learning-based strategies that utilize data from randomly arriving patients.

This research aims to develop a real-time resource utilization scheduling method
based on admissions, patient, and physician information within the ED environment,
and to build a simulation model that is applicable to various studies. The objectives
include: developing an ED simulation using DES, providing six scheduling policies based
on physician experience, and employing machine learning to select the most appropriate
scheduling policy. This study aims to develop a generic simulation model that can be
applied not just to specific hospitals but across various reusable systems [24]. Using
comprehensive ED visit data from the Korean National Emergency Department Information
System (NEDIS), we design and conduct experiments to validate our model, ultimately
facilitating optimal scheduling policy that improves the LoS.

LoSs are a critical factor directly influencing the quality and efficiency of healthcare
services. Shorter wait times are correlated with enhanced patient satisfaction and improved
treatment outcomes, positively impacting key healthcare quality indicators. These indi-
cators include patient satisfaction, treatment outcomes, and rates of readmission, all of
which tend to improve as wait times decrease. Additionally, efficiency metrics such as
medical staff productivity, patient processing time, and resource utilization also benefit
from reduced wait times, thereby enhancing the overall operational efficiency of healthcare
systems [7,9,10,14].

This analysis underscores the significant role that resource scheduling plays in reduc-
ing LoS and thereby improving healthcare quality and efficiency. By developing effective
scheduling strategies that consider real-time conditions and physician expertise, this study
aims to demonstrate how optimized resource allocation can directly contribute to improved
healthcare outcomes.

The structure of this study is as follows: Section 2 describes the related works. Section 3
describes the materials and methods. Section 4 describes the results. Section 5 provides a
discussion. Finally, Section 6 presents the conclusion.

2. Related Works

In this section, we explore existing literature on LoS and resource scheduling in EDs.
Our analysis emphasizes how different studies approach performance metrics and crucial
operational factors such as nonstationary demand, patient return visits, patient number
control, and resource allocation scheduling. A summary of these studies is presented in
Table 1, detailing their methodologies and focus areas.

Table 1. Related Works.

Research Performance Metrics Nonstationary
Demand

Patient
Return

Patient Number
Control

Allocation
Scheduling

Green et al. (2006) [23] Patient’s abandonment ratio N N N N
Izady et al. (2012) [25] Offered load Y N N Y
Ganguly et al. (2014) [26] Service level of patients N N N Y

Ahmed et al. (2009) [27] Average patient waiting time Y Y N N
Marchesi et al. (2020) [28] Patient waiting time Y N N N

Lee et al. (2020) [29] Patient waiting time Y N Y Y
Nidal et al. (2021) [24] LoS Y N Y N
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Table 1. Cont.

Research Performance Metrics Nonstationary
Demand

Patient
Return

Patient Number
Control

Allocation
Scheduling

Zaerpour et al. (2022) [30]
Divergence between the
physician’s service productivity
and the patient’s demands

Y N N Y

Liu et al. (2023) [31] Patient waiting time Y N Y Y

Wang et al. (2023) [32] LoS Y Y N N
Ran et al. (2024) [33] Patient queue length Y Y Y N

Green et al. (2006) [23] examined the patient abandonment ratio without addressing
nonstationary demand, patient returns, patient number control, or allocation scheduling.
Their study focuses solely on how often patients leave the ED without being seen. Izady
et al. (2012) [25] measured the offered load, acknowledging nonstationary demand and
incorporating allocation scheduling, but did not consider patient returns or patient number
control. Ganguly et al. (2014) [26] used service level of patients as their performance
metric and included allocation scheduling, yet did not account for nonstationary demand,
patient returns, or patient number control. Ahmed et al. (2009) [27] and Marchesi et al.
(2020) [28] both used patient waiting time as their primary performance metric. Ahmed
et al. considered both nonstationary demand and patient returns but did not include
allocation scheduling or patient number control, whereas Marchesi et al. focused only
on nonstationary demand without considering other factors. Lee et al. (2020) [29], Nidal
et al. (2021) [24], and Liu et al. (2023) [31] all assessed patient waiting time, with Lee
and Liu including nonstationary demand, patient returns, and allocation scheduling in
their methodologies. Nidal et al. considered nonstationary demand and patient returns
but did not integrate allocation scheduling. Zaerpour et al. (2022) [30] and Wang et al.
(2023) [32] analyzed the divergence between the physician’s service productivity and
patient demands and total patient waiting time, respectively, with both acknowledging
nonstationary demand. Zaerpour included allocation scheduling, but Wang did not, and
neither study addressed patient returns or patient number control. Ran et al. (2024) [33]
focused on patient queue length and was one of the few studies to address all indicators,
including nonstationary demand, patient returns, and patient number control, although
without incorporating allocation scheduling.

This comprehensive examination highlights the critical role of advanced scheduling
techniques, especially online allocation scheduling, in adapting to fluctuating demands and
optimizing resource allocation. Building on these findings, our research aims to address
existing gaps by integrating machine learning to enhance responsiveness and operational
efficiency in EDs, ultimately reducing LoS across varied demand scenarios.

3. Materials and Methods
3.1. Study Design

The study design for building an ED simulation system consists of several essential
components: requirements analysis, hybrid simulation modeling, and experimental anal-
ysis, as illustrated in Figure 1. This study design is grounded in the concept of hybrid
simulation, integrating different simulation methodologies to capture the complexities of
ED operations [34].

• Designing Simulation Process

The initial phase involves tailoring the simulation process to meet the specific opera-
tional needs of the ED. This stage includes defining key concepts and identifying the main
components of the ED system, such as patient intake, treatment processes, and resource
allocation. By employing Discrete Event Simulation (DES) and Agent-Based Simulation
(ABS), we can model the actual operations and patient flows within the ED with high
accuracy, ensuring that the simulation reflects real-world conditions.
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• Establishing Scheduling Policy

The second phase focuses on developing robust scheduling policies that are critical
for optimizing ED operations. These policies consider real-time conditions such as patient
influx and staff availability, and they are designed to be adaptable to dynamic changes
within the ED. Our aim is to minimize LoS time by implementing effective and flexible
scheduling strategies that can respond promptly to varying operational demands.

• Integrating Machine Learning Models

In the third phase, machine learning models are integrated into our scheduling strate-
gies to handle the variability in patient influx and physician availability. We develop
multiple strategies tailored to different scenarios, utilizing machine learning algorithms
to optimize these strategies for enhanced operational efficiency and responsiveness in the
ED setting.

• Experimentation and Evaluation

The final phase of our study involves experimentation and evaluation of the proposed
scheduling strategies. By simulating various scenarios, we assess the impact of different
strategies on reducing LoS, a critical issue in ED management. This iterative process
not only refines our theoretical concepts but also supports the development of adaptable
systems that can be implemented across various ED settings. Through continuous im-
provement and rigorous testing, our framework not only enhances the functionality of ED
systems but also improves overall LoS and healthcare provider efficiency.
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Figure 1. Study design.

3.2. Design Simulation Process

In this study, LoS includes patients admitted after emergency treatment and patients
who were not hospitalized. LoS time includes not only the interval from patient arrival
at the emergency department (ED) to receiving treatment but also additional time spent
post-treatment. This definition allows for an extensive analysis of LoS times across various
patient scenarios, facilitating a holistic understanding of resource scheduling and patient
experiences in the ED.

• Patient Flow and Resource Utilization

The patient flow in the ED, as illustrated in Figure 2, involves a detailed analysis of
the utilization of key resources such as nurses, technicians, physicians, beds, ultrasound,
X-ray, and treatment rooms. This process is based on general ED processes that have been
previously researched and refined rather than being specific to the scheduling for any
particular emergency department [24,31].
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• Simulation Scenario

Upon arrival at the hospital, patients are registered. Their arrival methods can vary,
including direct walk-ins, ambulance transport, and others. As the initial step, nurses
conduct triage based on the severity of the patients’ conditions, as referenced in [35]. After
classification, patients are divided into three groups according to their severity levels. Those
with more severe conditions require longer treatment times and are prioritized accordingly.
Patients then wait in the waiting room until they are called. The physicians are categorized
into two types: regular and senior, each associated with different treatment times. This
classification aids in aligning treatment capabilities with patient needs. The treatment
process requires various resources, including medical personnel and equipment within the
treatment room. Each resource is designated for specific tasks, reflecting the operational
complexities of the ED. This simulation acknowledges the challenge of accurately modeling
every aspect of the ED due to the inherent differences between theoretical models and
real-world conditions.

• Simulation Modeling

We employ both Agent-Based Simulation (ABS) and Discrete Event Simulation (DES)
to model the operations of the ED. The detailed components of the processes and agents
constituting the simulation are presented in Table 2. DES analyzes the orderly opera-
tional flows such as patient arrivals, registration, triage, and treatment from a manage-
ment perspective, allowing for an efficient layout of ED processes. ABS, on the other
hand, captures the behaviors and interactions of individual agents (patients, medical
staff) within the system. This dual approach enables us to address the dynamics of ED
operations comprehensively.

Table 2. Simulation process and agent.

Type Entity Script

Process
(Block)

Arrivals Patients randomly visit the ED
Registration Patient registration

Triage Classification by KTAS level according to patient severity

Wait Patient waiting after registration. After triage, the patient
waits before receiving treatment.

Medical test Medical tests such as X-ray and ultrasound are performed.

Bed A bed for patients to receive treatment. Time required
varies depending on severity.

Treatment A doctor provides treatment to a patient. Treatment time
varies depending on the doctor’s experience.

Discharge Patient leaves the ED
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Table 2. Cont.

Type Entity Script

Agent
(Actor)

Patient Patients using the ED
Nurse Registration, triage, and guiding the patient to the bed

General and Senior
Doctor

Treating the patient. Treatment time varies depending on
the doctor’s experience.

3.3. Establishing Scheduling Policy

In EDs, the scheduling policy is designed to allocate physicians based on the patients’
condition severity, reflecting the current dynamics within the ED. The primary goal of
these policies is to minimize LoS times. Severity assessment is conducted using the Korean
Triage and Acuity Scale (KTAS), which is an adaptation of the Canadian Triage and Acuity
Scale (CTAS) specifically tailored to fit the healthcare context in Korea. KTAS categorizes
patients into five levels based on their symptoms, where a higher severity score indicates a
need for longer treatment times and prioritizes patients with more severe conditions.

• Resource Scheduling Policy

Scheduling in EDs is structured around six scenarios, differentiated by three schedul-
ing methods that distinguish between general physicians and senior physicians [31]. These
scenarios are designed to ensure that physicians are matched with patients according to
the severity of the medical cases they are best equipped to handle. Treatment durations
are adjusted based on the capacity and specialty of the physicians. The main scheduling
strategies include:

1. First In First Out (FIFO): Patients are attended to on a first-come, first-served basis.
2. Shortest Remaining Processing Time (SRPT): Prioritizes patients based on the esti-

mated time remaining for their treatment. This strategy aims to reduce waiting times
by managing treatment flows more efficiently.

3. Critical Ratio (CR): This approach prioritizes patients based on the criticality of
their conditions.

• Detailed Scheduling Policy

The resource scheduling policies in our EDs are designed to optimize the allocation of
physicians and manage patient flows efficiently. These strategies are implemented through
a structured approach that considers both the severity of the patient’s condition and the
specific expertise of our medical staff. Here is a detailed breakdown of the six scenarios
under our three main scheduling strategies:

4. FIFO (Random): Under this strategy, patients are seen as they arrive, regardless of
their condition severity. This scenario uses a random assignment where any available
doctor, whether general or senior, may attend to the patient. This method is simple
and ensures that everyone is treated without unnecessary delay.

5. FIFO (Centroid): This variation refines the FIFO approach by assigning patients
based on the severity of their conditions. General physicians handle less severe cases,
optimizing their quicker treatment times, while senior physicians take on more severe
cases, leveraging their advanced expertise.

6. SRPT (General First): This strategy focuses on reducing overall waiting times by
assigning general physicians to patients whose treatments can be completed quickly,
thus clearing cases efficiently.

7. SRPT (Senior First): Similarly, senior physicians are assigned to less severe cases that
can be quickly resolved, ensuring that their skills are used effectively to minimize the
impact on the ED’s flow.

8. CR (General First): General physicians are prioritized to treat the most severe cases
they are qualified to handle, ensuring that critical patients receive immediate care.

9. CR (Senior First): The most critical patients are reserved for senior physicians, who
are most capable of addressing complex and urgent medical needs quickly.
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To better illustrate how each of these strategies is applied within our ED, Table 3
provides a clear, structured overview of the process and priorities assigned to each schedul-
ing method:

Table 3. Resource Scheduling Policy.

No. Strategy Priority Script

1 FIFO
(Random) Random Any available doctor can be assigned to

incoming patients.

2 FIFO
(Centroid) Severity-based General doctors for less severe, senior doctors for

more severe cases.

3 SRPT
(General First) Efficiency General doctors handle cases that can be

completed quickly.

4 SRPT
(Senior First) Efficiency Senior doctors handle quickly resolvable, less

severe cases.

5 CR
(General First) Criticality General physicians are first assigned to the most

severe cases they can manage.

6 CR
(Senior First) Criticality Senior doctors prioritize the most critical patients.

3.4. Integrating Machine Learning Model

In EDs, the dynamic nature of patient influx and medical conditions requires a flexible
and responsive scheduling policy. Traditional scheduling policies, while effective under
consistent conditions, often struggle to adapt in real time to sudden changes in patient
severity and volume. To address these limitations, we integrate ML models that analyze
real-time data to select the most effective scheduling strategy dynamically. Figure 3 illus-
trates the workflow of our ML model, detailing how data flow from collection through to
decision-making.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 17 
 

8. CR (General First): General physicians are prioritized to treat the most severe cases 
they are qualified to handle, ensuring that critical patients receive immediate care. 

9. CR (Senior First): The most critical patients are reserved for senior physicians, who 
are most capable of addressing complex and urgent medical needs quickly. 
To better illustrate how each of these strategies is applied within our ED, Table 3 

provides a clear, structured overview of the process and priorities assigned to each sched-
uling method: 

Table 3. Resource Scheduling Policy. 

No. Strategy Priority Script 

1 
FIFO 

(Random) Random 
Any available doctor can be assigned to incom-

ing patients. 

2 
FIFO 

(Centroid) Severity-based 
General doctors for less severe, senior doctors for 

more severe cases. 

3 SRPT 
(General First) 

Efficiency General doctors handle cases that can be com-
pleted quickly. 

4 SRPT 
(Senior First) Efficiency Senior doctors handle quickly resolvable, less se-

vere cases. 

5 
CR 

(General First) Criticality 
General physicians are first assigned to the most 

severe cases they can manage. 

6 CR 
(Senior First) 

Criticality Senior doctors prioritize the most critical pa-
tients. 

3.4. Integrating Machine Learning Model 
In EDs, the dynamic nature of patient influx and medical conditions requires a flexi-

ble and responsive scheduling policy. Traditional scheduling policies, while effective un-
der consistent conditions, often struggle to adapt in real time to sudden changes in patient 
severity and volume. To address these limitations, we integrate ML models that analyze 
real-time data to select the most effective scheduling strategy dynamically. Figure 3 illus-
trates the workflow of our ML model, detailing how data flow from collection through to 
decision-making. 

 
Figure 3. Machine Learning Workflow. 

• Data generation and collection 
The data are based on the National Emergency Department Information System 

(NEDIS) Emergency Medical Statistics Yearbook [35]. Data on visit records by hour and 

Figure 3. Machine Learning Workflow.

• Data generation and collection

The data are based on the National Emergency Department Information System
(NEDIS) Emergency Medical Statistics Yearbook [35]. Data on visit records by hour and
patient classification by KTAS are used for tree regions. A total of 9 scenarios are determined,
each with different ED entry times, KTAS scores, and compositions of attending and
resident physicians. Data are generated when a scenario is entered into ED simulation.
Through simulation results, a model is created to provide scheduling strategies tailored to
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the situation. Data generated from ED simulation results are used at three-hour intervals
out of 24 h. They utilize the number of patients waiting after triage and the number of
attending and resident physicians. Scheduling is applied to data for each scenario, and data
with minimal waiting times are utilized. Input data include the total number of patients
waiting, the number of queues by severity, and the current availability of interns and
attending physicians, while output data represent the respective scheduling strategy.

• Feature Engineering and Preprocessing

We enhance our model’s accuracy by developing features that capture the complexities
of ED operations, such as peak times, common types of emergencies during specific
periods, and average wait times per severity level. These features help the model to predict
scheduling needs more precisely. Data include the total number of patients, the number of
queues by severity, and the current availability of interns and attending physicians, while
output data represent the respective scheduling policy. Only data with low waiting times
are used for training. Low waiting times comprise the bottom 25% of data from the quartile.
Duplicate data are removed.

• Model Selection and Training

We employ the Backpropagation Algorithm within an Artificial Neural Network due
to its efficacy in handling nonlinear data and its ability to learn from complex patterns.
This model is trained on historical data from NEDIS, focusing on scenarios that align with
current operational challenges. We choose models based on their performance metrics,
including accuracy, precision, and recall, ensuring that they meet the high standards
required for medical applications.

• Model Application

The trained model runs continuously, analyzing data every three hours to adjust
scheduling policies accordingly. It considers various factors such as current patient queues,
severity distributions, and available medical staff. By doing so, it dynamically selects
from six predefined scheduling policies (e.g., FIFO, SRPT, CR) the one that best fits the
current situation.

• Future Enhancements

We regularly assess the model’s impact on ED operations by monitoring changes in
patient wait times, resident times, and staff utilization rates. This is a process to check
whether LoS has been reduced by measuring the resident time after the patient leaves the
room, and through this, the database is reconstructed.

This adaptive approach ensures that our ED operates efficiently, with reduced waiting
times and improved patient outcomes, demonstrating the practical benefits of machine
learning in critical healthcare settings.

4. Results

EDs are challenging environments that must rapidly address a variety of patient
conditions and urgent medical needs. This study evaluates the impact of patient KTAS
levels and physician experience on the efficiency of medical treatment and LoS and pro-
poses effective scheduling policies based on these findings. When implemented in actual
ED settings, these policies can optimize the use of medical resources and reduce patient
LoS times, thereby improving the quality of emergency medical services [7,8]. We de-
scribe the scenario, the results of the proposed machine learning model, and finally, the
simulation results.

The purpose of the experiment is twofold. The first objective is to evaluate whether
the ED simulation can measure LoS. The second objective is to assess whether a machine
learning-based scheduling policy model can reduce LoS.

The experiments execution utilizes Anylogic 8.8.4 software. The desktop employed
for the experiments features an AMD Ryzen 9 3900X 3.80 GHz processor and 32.0 GB



Appl. Sci. 2024, 14, 4264 9 of 16

of RAM. Data preprocessing and machine learning tasks utilize the Classification model
in SPSS Clementine 11.1. Simulation and machine learning tasks are performed using
separate software, and the approach involves checking data during simulation execution
and inputting inferred values from machine learning into the simulation.

4.1. Scenario Discription

• Simulation flow and parameters

The scenario is as follows: Patients of varying severity levels visit the ED for treatment.
Nurses classify the patients’ condition into three levels based on the KTAS (1, 2; 3; 4, 5).
All patients undergo a similar treatment process. Depending on their severity, patients
receive medical tests (ultrasound/X-ray) before seeing a doctor. There are three treatment
rooms tailored to the severity of the patients’ conditions. After triage, nurses transfer
patients to the appropriate beds, and doctors provide the necessary treatment. Patients are
discharged upon completion of their treatment. Parameters used in the simulation of the ED
research are listed in Table 4, with settings based on average durations and references from
existing studies.

Table 4. Simulation experiments parameters (T: Triangular) [36–39].

Process Actor Duration (min)

Registration Nurse Triangular (3, 5, 10)
Triage Nurse Triangular (3, 7, 10)
Medical Test (X-ray, Ultrasound) Technician Normal (3, 15, 30)

Diagnosis

General Doctor
KTAS 1, 2: Triangular (8, 20, 30)
KTAS 3: Triangular (10, 25, 35)
KTAS 4, 5: Triangular (20, 35, 45)

Senior Doctor
KTAS 1, 2: Triangular (5, 15, 25)
KTAS 3: Triangular (5, 20, 30)
KTAS 4, 5: Triangular (15, 30, 40)

Bed Patient
KTAS 1, 2: Triangular (480, 600, 720)
KTAS 3: Triangular (240, 360, 480)
KTAS 4, 5: Triangular (60, 120, 240)

• Patient arrival scenario

Experimental analysis is based on the 2022 NEDIS Emergency Medical Statistics
Yearbook, utilizing emergency department (ED) data from three regions within South
Korea. NEDIS provides comprehensive statistical information on ED facilities, equipment,
personnel, and training. It offers hourly patient admission times categorized by the Korean
Triage and Acuity Scale (KTAS) and provides a year’s worth of statistical data. However,
simulating a full year would be too extensive, so daily admission rates are calculated
instead. For each region, statistics for a single facility including medical staff, equipment,
and facility capacity are used to estimate daily patient admissions. This approach allows for
general application across various emergency departments, not just specific ones. Therefore,
daily data from three regional EDs are used to construct the scenarios. These scenarios
incorporate differences in patient arrival times, KTAS ratings, patient residence time, and
medical staff availability across regions.

Ethical approval is not required for this study because the statistical data is pub-
licly available.

The actual patient arrival data for the three regions of NEDIS are shown in Table 5.
This is the average daily visit of patients recorded for one regional emergency center.
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Table 5. Patient arrival data for the three regions of NEDIS (calculated for one day).

Scenario KTAS and
Discharge

Patient Arrival (Number of Patient) Resource

Total 0~3 3~6 6~9 9~12 12~15 15~18 18~21 21~24 General
Doctor

Senior
Doctor Nurse

A

Total 105 10 6 9 17 16 16 16 15

7 6 32
KTAS 1, 2 8 1 0 1 1 1 1 1 1

KTAS 3 45 4 3 4 8 8 7 6 6
KTAS 4, 5 52 5 3 4 7 7 7 9 9

B

Total 99 8 5 8 17 16 16 15 14

5 4 23
KTAS 1, 2 11 1 1 1 2 2 2 2 1

KTAS 3 60 4 3 5 11 11 10 9 7
KTAS 4, 5 28 3 2 2 4 3 4 5 5

C

Total 97 9 6 8 15 13 14 16 15

7 6 23
KTAS 1, 2 7 1 0 1 1 1 1 1 1

KTAS 3 41 4 3 4 7 6 6 6 6
KTAS 4, 5 49 5 3 4 7 6 7 9 9

4.2. Machine Learning Model Performance

First, we generated simulation result data. For training, we obtained data by applying
6 scheduling algorithms to a total of 9 scenarios. Out of a total of 768 data generated from
the simulation, we selected a final dataset of 192 with the lowest waiting times, which
represents the top 25%. Some of the input and output data used for training are shown in
Table 6.

Table 6. Learning dataset (simulation output data).

Record Queue
Doctor Scheduling

StrategiesGeneral Senior

1 1 2 3 4 5 5 5 1
2 2 3 1 1 1 5 5 3
3 1 2 2 2 1 5 5 3

. . .
192 2 2 2 1 3 4 6 6

Next, we proceed with training using a classification model. The algorithm employed
is Backpropagation of the Neural Network (NN). The input layer consists of 7 nodes, with
1 hidden node and 1 output node. The training was executed 200 times, utilizing the
sigmoid function as the activation function. For comparison of machine learning algorithms,
we used Logistic Regression, C 5.0, and Naïve Bayesian. Machine learning performance
evaluation was conducted using a 3-fold method on 192 data. The experimental results
for the 4 machine learning algorithms and 192 data are shown in Figure 4. Performance
evaluation was based on Sensitivity, Specificity, and Accuracy.

Sensitivity, Specificity, and Accuracy values recorded were above 93. While differences
among experimental groups were not significant, the Neural Network exhibited the highest
accuracy at 93.98%. The reason for insignificant differences among algorithms can be
interpreted as most of the training data being biased toward specific scheduling policies,
leading to the predominant usage of scheduling policies with superior performance. The
most frequently used policy was CR (Senior First), followed by SRPT (General First) and
CR (General First). In contrast, policies FIFO (Random), FIFO (Centroid), and SRPT (Senior
First) were rarely used. Thus, it can be inferred that the performance of specific scheduling
policies is better than using all policies.
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4.3. Experimental Result

The experimental results aim to validate the effectiveness of the proposed machine
learning-based scheduling policy in reducing LoS and improving the efficiency of ED
operations. The experiments were conducted using real-world data obtained from the
NEDIS and simulated scenarios based on different patient arrival patterns and severity
levels (Table 5). The simulation was conducted 30 times for each region. The average of
30 results is used to reflect the results. Because the amplitude of LoS can be large depend-
ing on the individual patient, accurate measurement is difficult, so many measurements
were performed.

4.3.1. Comparison between Real Data and Simulation

The first experiment conducted assesses the difference in length of stay (LoS) between
real operational data and simulated results across three distinct emergency department sce-
narios. The comparative analysis focuses on understanding how well different scheduling
strategies perform in aligning simulated outcomes with real-world data. The experimental
results are shown in Figure 5.

The current scenario includes all KTAS levels, thus showing a lower LoS. The real
data show an average of 295.93 min, while the simulation results show a duration of
330.35 min. The final error is observed as an average of 10.41%, indicating an accuracy
of 89.59%. Since the ED simulation shows a similarity of about 90%, it can be considered
useful for simulations. In the case of Scenario A, the error rate is 9.46%, and because there
are many low-severity patients and a large staff, the accuracy is higher. For Scenarios B
and C, the error rates are 10.83% and 10.41%, respectively, showing that accuracy decreases
when there are more high-severity patients.

The second experiment compares the results of the simulation with the actual data
according to the KTAS of the actual data. It shows the results according to each KTAS in
the three regions. The experimental results are shown in Table 7. This experiment inputs
patients with the same severity. ED simulation measures the performance of predictions
for each severity level.
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Table 7. Comparison of actual data and simulation data of KTAS.

Scenario KTAS Level Real Data Simulation Result Accuracy

A
KTAS1 + 2 417.45 453.08 92.14%

KTAS3 353.81 388.02 91.18%
KTAS4 + 5 225.49 237.99 94.75%

B
KTAS1 + 2 463.62 498.30 93.04%

KTAS3 404.75 439.40 92.11%
KTAS4 + 5 231.02 244.32 94.56%

C
KTAS1 + 2 350.93 386.20 90.87%

KTAS3 278.43 313.18 88.90%
KTAS4 + 5 175.7 188.37 93.28%

The experimental results showed a high accuracy of 92.31% overall. This is because
patients with the same severity were entered. Scenario A: Revealed an accuracy ranging
from 92.14% for KTAS levels 1 and 2, decreasing slightly for KTAS 3 at 91.18%, and showing
the best simulation performance at KTAS levels 4 and 5 with 94.75%. This pattern suggests
that while the simulation is quite robust in predicting outcomes for less severe cases, it
struggles slightly with the most severe cases, possibly due to the unpredictable nature and
complexity of the treatments required. Scenario B: Mirrored similar trends with the lowest
accuracy for KTAS 1 and 2 at 93.04%, and slightly better accuracy for KTAS 3 and 4 + 5 at
92.11% and 94.56%, respectively. This consistency across scenarios underscores a systematic
issue with simulating higher acuity levels accurately. Scenario C: Exhibited the most
significant drop in accuracy for mid-level acuity (KTAS 3) at 88.90%, while maintaining
relatively high accuracy for the least severe cases at 93.28%.

Given the high level of accuracy demonstrated across various KTAS levels and sce-
narios, and considering the close alignment between simulated and real data outcomes, it
is evident that the ED simulation has been well constructed and is appropriately suited
for practical application. The simulation’s ability to mirror real-world conditions with a
substantial degree of accuracy averaging over 90% confirms its utility and effectiveness in
predicting operational dynamics within emergency departments. This makes it a valuable
tool for strategic planning and operational adjustments in emergency care settings.
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4.3.2. Comparison of Resource Scheduling Policies

In this experiment, we assess the effectiveness of various resource scheduling policies
implemented in emergency departments (EDs). The goal is to determine which strate-
gies optimize patient flow and reduce length of stay (LoS), thereby enhancing overall
departmental efficiency and patient satisfaction. We compare the LoS results of schedul-
ing across scenarios, as shown in Table 8 detailing the simulation results of resource
scheduling policies.

Table 8. Compares of average LoS between resource scheduling policies (min).

Scenario

Simulation Result

FIFO
(Random)

FIFO
(Centroid)

SRPT
(General First)

SRPT
(Senior First)

CR
(General First)

CR
(Senior First)

Integrated
ML

A 328.57 325.75 328.31 323.69 327.77 323.97 321.13
B 395.42 393.43 397.14 393.45 394.41 392.35 388.65
C 262.85 246.01 264.04 263.40 265.57 261.72 258.96

Average 328.95 321.73 329.83 326.85 329.25 326.01 322.91

Scenario A exhibited a range of outcomes across the scheduling strategies imple-
mented. The integrated ML approach demonstrated superior performance, achieving the
lowest LoS at 321.13 min. This underscores the effectiveness of the integrated ML strategy
in optimizing operational efficiency by dynamically adapting to the complexity of patient
needs, and resource availability. The Senior First Strategy using Shortest Remaining Pro-
cessing Time (SRPT) also yielded favorable results with an LoS of 323.69 min, suggesting
that prioritizing senior doctors can expedite treatment processes effectively. Scenario B,
representing a different patient and resource dynamic, similarly showed the best outcomes
with the integrated ML strategy, where the LoS was significantly reduced to 388.65 min.
Notably, both the FIFO (Centroid) and the Critical Ratio (CR) with Senior First showed rela-
tively lower LoS than other strategies, indicating their potential effectiveness in scenarios
characterized by variable patient acuity and medical staffing levels. Scenario C provided
a notable contrast, especially in the performance of the FIFO (Centroid) strategy, which
recorded a surprisingly low LoS of 246.01 min. This outcome may reflect an optimal align-
ment of this strategy with the specific patient inflow and severity distribution in Scenario
C. Nevertheless, the integrated ML strategy maintained consistent efficacy with the lowest
LoS at 258.96 min among the more advanced strategies. The higher LoS observed in the
CR (General First) and SRPT (General First) strategies suggests less efficiency in managing
a diverse range of emergency cases without prioritization. This demonstrates that our
proposed integrated ML approach reduces average length of stay (LoS) to approximately
322.91 min, compared to 327.10 min under traditional methods. The results indicate that
the integrated ML strategy consistently outperforms traditional scheduling approaches by
effectively analyzing and responding to real-time data. This approach not only minimizes
LoS and waiting times but also enhances overall emergency department performance.

The experiment shows the effectiveness of different scheduling strategies in three
distinct emergency department scenarios across varying KTAS levels. The LoS was com-
pared between actual data and several simulated outcomes to determine the most efficient
scheduling policy. Table 9 shows the experimental results.

In the analysis of various scheduling strategies across three emergency department
scenarios, the integrated machine learning (ML) strategy demonstrated outstanding per-
formance, particularly excelling in KTAS1 + 2 in Scenario A with the lowest length of stay
(LoS) at 447.80 min, which shows a significant improvement over other strategies like
FIFO (Random) at 456.88 min and SRPT (Senior First) at 456.32 min. This trend of superior
performance by integrated ML is consistent across different KTAS levels and scenarios,
suggesting its effectiveness in dynamically adapting to the complexity of patient needs. For
instance, in Scenario B for KTAS1 + 2, while the FIFO (Random) strategy resulted in an LoS
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of 500.69 min, the integrated ML strategy reduced the LoS to 497.03 min, showcasing its
efficiency in managing patient flow even during peak conditions. Similarly, in Scenario C
for KTAS3, the LoS was lowest for the CR (General First) strategy at 308.36 min compared
to 318.06 min by SRPT (General First), highlighting the potential of targeted strategies
in specific patient severity contexts. Moreover, the integrated ML strategy consistently
outperformed or was competitive with traditional methods across all scenarios. For exam-
ple, in KTAS4 + 5 of Scenario C, while the LoS for CR (Senior First) peaked at 192.98 min,
integrated ML managed to keep it lower at 186.44 min.

Table 9. Compares of KTAS between resource scheduling policies (min).

Scenario KTAS FIFO
(Random)

FIFO
(Centroid)

SRPT
(General First)

SRPT
(Senior First)

CR
(General First)

CR
(Senior First)

Integrated
ML

A
KTAS1 + 2 456.85 453.25 455.38 456.32 452.22 449.69 447.80

KTAS3 389.38 386.52 391.34 394.38 388.57 382.76 383.16
KTAS4 + 5 236.73 235.35 236.70 236.37 241.85 245.18 233.75

B
KTAS1 + 2 500.69 500.02 501.35 500.15 494.27 494.58 497.03

KTAS3 442.18 440.94 442.62 445.38 435.52 435.10 434.04
KTAS4 + 5 243.94 243.55 239.15 241.91 249.92 252.07 239.69

C
KTAS1 + 2 387.22 386.94 392.24 387.50 383.26 382.20 383.99

KTAS3 313.73 313.82 318.06 314.75 311.81 308.36 311.72
KTAS4 + 5 188.90 185.52 186.74 183.75 194.18 192.98 186.44

These findings highlight the potential of integrating machine learning with traditional
scheduling approaches to create more resilient and efficient emergency care environments,
which is essential for improving patient outcomes and operational efficiency in high-stakes
healthcare settings.

5. Discussion

To effectively address the uncertainty of future scenarios, the importance of setting
policies, schedules, and frameworks within emergency departments (EDs) is increasingly
emphasized. In this study, a Discrete Event Simulation (DES)-based framework for mod-
eling typical scenarios in various Korean EDs was developed. Designed to represent the
actual conditions of EDs with different structural and regional characteristics, the frame-
work achieved an accuracy of approximately 89% according to the scheduling strategies
used. This allows for efficient resource allocation despite limited medical resources and
frequent congestion.

We have developed six resource scheduling policies that consider the diverse capabili-
ties of doctors. Utilizing machine learning techniques, these policies adjust and provide
optimal schedules in real time, improving the quality of medical services and optimizing
patient recovery rates. The structure not only accommodates these six resource scheduling
policies but also integrates various existing policies in practice, thereby establishing a
foundation for more rapid and effective responses to emergency situations and enhancing
the overall efficiency of ED operations.

6. Conclusions

The simulation framework developed through this research plays a crucial role in
addressing the congestion issues in Korean EDs, offering practical solutions to alleviate
ongoing problems such as shortages of medical resources. The framework is capable of
simulating various scenarios, exploring the applicability in actual ED environments, and,
through the integration with real-time data, predicting future congestion and creating
optimal operational environments. Moreover, it provides methods to improve the ED
environment using machine learning-based resource scheduling policies.
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Future research directions involve applying the developed simulation system to actual
EDs and building digital twin services through real-time data exchange. Such real-time sim-
ulations and data analysis can further enhance the operational efficiency of EDs, ultimately
reducing patient waiting times and improving the quality of healthcare services.
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