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Simple Summary: Carbohydrate utilization is closely associated with level, chemical structure
or processing method. Selecting an optimal carbohydrate source needs to take into consideration
all these factors. This study investigated the effects of different carbohydrate sources, including
monosaccharide and gelatinized or ungelatinized polysaccharide starch, on growth performance,
hepatic glucose metabolism, antioxidant capacity, and immunity in juvenile largemouth bass. The
results showed that dietary starch exhibited better growth performance independent of gelatinization.
Ungelatinized potato starch was proved to be the more effective carbohydrate source for increasing
hepatic glycolysis and ungelatinized tapioca starch better improved antioxidant and immune capaci-
ties. This study provides new information for selecting carbohydrate sources in artificial feed and
helps improve fish health in farmed largemouth bass.

Abstract: This study investigated the effects of glucose (GLU), tapioca starch (TS), gelatinized tapioca
starch (GTS), potato starch (PS) and gelatinized potato starch (GPS) on growth and physiological
responses in juvenile largemouth bass Micropterus salmoides. After 8 weeks, fish fed with starch diets
had better weight gain and growth rates. Counts of red blood cells and monocytes were increased in
the PS and GPS groups, compared to GLU group. Contents of serum triglyceride and total cholesterol
were markedly elevated in the TS, PS and GPS groups. There were lower levels of serum glucose,
insulin and cholecystokinin, and higher agouti-related peptide contents in the PS group compared
to GLU group. PS and GPS could enhance glycolysis and TCA cycle by increasing their enzyme
activities and transcriptional levels. Additionally, starch sources markedly heightened mRNA levels
of key genes involved in the respiratory electron transport chain. Additionally, elevated mRNA levels
of key antioxidant genes were shown in the TS and GTS groups. Moreover, TS and PS could promote
immunity by upregulating transcriptional levels of the complement system, lysozyme and hepcidin.
Taken together, starch exhibited better growth via increasing glycolysis and TCA cycle compared
with GLU, and PS could improve antioxidant and immune capacities in largemouth bass.

Keywords: Micropterus salmoides; carbohydrate sources; growth and hematological parameters;
glucose metabolism; antioxidant and immune capability

1. Introduction

Carbohydrate is one of the most important energy sources and has been widely ap-
plied in aquatic animal diets due to its low cost. Increasing its proportion appropriately
could ultimately spare protein for growth in diets [1–3]. Additionally, carbohydrate is
used as important binders to increase the physical quality of feed pellets and help to shape
particles [4]. The existing research reveals that the appropriate amount of carbohydrate pro-
motes growth, feed utilization, digestive and metabolic function, and immune responses in
fish [1,3]. The recommended carbohydrate addition is generally lower for carnivorous fish
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than for herbivorous and omnivorous fish in order to achieve these beneficial effects [1,5].
Conversely, excessive carbohydrate causes a series of negative effects, such as reduced
growth, energy metabolism disturbance and defense system imbalance [2,5]. Therefore,
the optimal carbohydrate content for the growth, metabolism, and immunity in farmed
animals has long attracted the attention of many researchers.

Besides the supplementary level, the effects of dietary carbohydrate on fish health
largely depend on its structure and processing technology [4,6,7]. Dietary carbohydrate
can be categorized in three types, monosaccharide, disaccharide and polysaccharide, ac-
cording to their chemical structure. In fact, starch polysaccharide is naturally the most
widely distributed and the most common form of carbohydrate in diets [6]. In aquatic
feeds, starch is an abundant source of polysaccharide, including tapioca starch, corn starch,
potato starch, etc. These starch sources have lower amylose content and higher amy-
lopectin content, which are also used as a better mucoadhesive polymer for producing
feeds due to a high swelling power [8,9]. These attractive characteristics make them ap-
plied extensively in the feed industry. Health and growth-improving effects of tapioca and
potato starch have been demonstrated in Barramundi Lates calcarifer, and Olive flounder
Paralichthys olivaceus [10–12]. More recent studies have found that the utilization of carbo-
hydrate sources in farmed animals varies with processing methods [8,13]. Among these
processing parameters, the gelatinization degree has the greatest influence on carbohydrate
absorption and digestion in animals [8]. Generally, gelatinized starch sources have higher
digestibility compared to raw starch, because native starch after gelatinization treatment
exhibits the functional properties, especially increasing metabolic activities in animals [13].
However, most studies in fish focus on one aspect of carbohydrate and comparatively study
the impact of its level or molecular structure or gelatinization on growth and physiological
responses in fish [10,14–16]. In fact, all aspects, including hematological variations, serum
biochemical parameters and hormones, glucose metabolism, antioxidant and immune capa-
bilities, need to be comprehensively considered to find an appropriate carbohydrate source
for improving growth and health in different animals. Therefore, a further systematic study
of the selection of carbohydrate in feeds is needed.

Micropterus salmoides, commonly known as largemouth bass, has a great economic
value in the Chinese market. In recent years, the production of largemouth bass has
expanded rapidly due to its fast growth rate, strong adaptability, and high nutritional
value [17]. More high-quality compound feeds will be needed to meet the rising produc-
tion of largemouth bass. However, nutritional requirements are still incomplete for this
species. Although a certain amount of carbohydrate is required for the formation of pellets,
further investigation is still necessary to determine which kind of carbohydrate sources
are beneficial for improving growth, glucose metabolism and hepatic health of largemouth
bass. Thus, this study was conducted to comprehensively investigate the physiological
and metabolic responses of largemouth bass fed with five kinds of carbohydrate sources:
monosaccharide (glucose) and polysaccharide (tapioca starch, gelatinized tapioca starch,
potato starch and gelatinized potato starch). The optimal carbohydrate source in diets
was selected by evaluating growth performance, serum biochemical parameters, glucose
metabolism, antioxidant capacity and immune function. The results provide new insights
for the development of artificial composite feeds for largemouth bass.

2. Materials and Methods
2.1. Animals and Diets Preparation

Juvenile largemouth bass were purchased from Deqing Longshengli Breeding farm
(Huzhou, China). Before the feeding experiment, all fish were first acclimated to indoor
culture settings and given a commercial diet in glass tanks with a capacity of 1000 L for
a period of 2 weeks. Five isoprotein and isolipidic experimental diets were made at the
National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and
Nutrition (Huzhou, China). Tapioca starch (TS), gelatinized tapioca starch (GTS), potato
starch (PS), and gelatinized potato starch (GPS) were selected as starch sources. Glucose
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(GLU) was used as a control energy source in this study. The composition and nutrient
levels of the experimental diets are shown in Table 1. The raw materials in diets were
passed through a 60-mesh sieve and subsequently transformed into hard pellet feed with a
diameter of 1.5 mm. Finally, the experimental diets were stored in the freezer at −20 ◦C.

Table 1. Composition and nutrient levels of experimental diets (% dry matter).

Ingredients GLU TS GTS PS GPS

Casein a 27.0 27.0 27.0 27.0 27.0
Fish meal b 37.0 37.0 37.0 37.0 37.0
Soybean oil c 7.0 7.0 7.0 7.0 7.0
Lecithin b 2.0 2.0 2.0 2.0 2.0
Mineral premix d 2.5 2.5 2.5 2.5 2.5
Vitamin premix e 1.2 1.2 1.2 1.2 1.2
Choline chloride a 0.4 0.4 0.4 0.4 0.4
Microcrystalline cellulose f 12.9 12.9 12.9 12.9 12.9
Glucose (GLU) a 10.0
Tapioca starch (TS) g 10.0
Gelatinized tapioca starch (GTS) g 10.0
Potato starch (PS) g 10.0
Gelatinized potato starch (GPS) g 10.0
Total 100.0 100.0 100.0 100.0 100.0
Proximate composition
Crude protein (%) 48.98 48.68 48.72 48.81 48.85
Crude lipid (%) 12.07 12.15 12.21 12.19 12.12
Ash (%) 4.91 4.91 4.93 4.92 4.92

a Obtained from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China; Casein crude protein 80.56%.
b Obtained from Zhejiang Dongyu Biotechnology Co., Ltd., Huzhou, China; Fish meal crude protein 67.6%.
c Soybean oil, obtained from COFCO Group Co., Ltd., Beijing, China. d Mineral premix (mg/kg): KI, 0.4 mg;
CoCl2·6H2O, 52 mg; CuSO4·5H2O, 16 mg; FeSO4·7H2O, 200 mg; ZnSO4·H2O, 280 mg; MnSO4·H2O, 45 mg;
MgSO4·7H2O, 1200 mg; Ca(H2PO4)2, 12,000 mg; NaCl, 60 mg. e Vitamin premix (mg/kg): vitamin A, 20 mg;
vitamin D3, 3 mg; vitamin C, 300 mg; vitamin E, 300 mg; thiamin, 20 mg; riboflavin, 10 mg; pyridoxine HCl,
20 mg; vitamin B12, 0.2 mg; vitamin K3, 5 mg; inositol, 1000 mg; pantothenic acid, 30 mg; folic acid, 3 mg; niacin
acid, 50 mg; biotin, 1 mg. f Obtained from Linghu Chemical Co., Ltd., Huzhou, China. g Obtained from Jiaxing
Xinxin Food Technology Co., Ltd., Jiaxing, China.

A total of 375 fish (initial body weight: 10.0 ± 0.02 g) were randomly assigned to
5 groups in a closed circulating water system with triplicate allocations, each tank with
a volume of 500 L containing 25 fish. All fish were provided with the experimental
diets described above, which were administered at 3–4% of fish body weight twice daily
(08:00 and 17:30), for 8 weeks. The temperature of the culture water was kept within
the range of 26.5–28.5 ◦C, with a pH level between 6.8 and 7.3, and a dissolved oxygen
concentration above 5.2 mg/L.

2.2. Sample Collection

After the feeding trial, all fish were fasted for 24 h. The fish were initially anesthetized
according to the information outlined in a previous study [17]. They were then weighted
and measured for subsequent growth parameters [15–17]. Blood samples were first taken
from the tail vein of 15 fish for next blood cell identification and counting. Then, the
remaining blood samples were centrifugated at 4 ◦C and 3000× g for 10 min to collect
serum samples and detect serum biochemical indexes. Livers of the 15 fish in each glass
tank were collected, sampled and quick frozen in liquid nitrogen and stored at −80 ◦C for
further use. Another 3 fish from each glass tank were chosen for whole body composition
analysis and stored at −20 ◦C.

2.3. Serum Cell Counting and Biochemical Indexes

Blood cell identification and counting were conducted using a TEK 8500 VET automatic
blood analyzer (Tekang Technology, Nanchang, China) following methods described by
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Wu et al. [18]. Metabolite contents and enzyme activities in the serum samples were
detected on C400n automated hematology analyzer (Shenzhen, China) according to the
corresponding instructions described by Yang et al. [17]. The contents variation of hormones
modulating glucose metabolism and appetite in the serum samples were also measured
using the commercial detecting kits (Jiancheng Biotech Co., Nanjing, China) following their
corresponding instructions.

2.4. Determination of Hepatic Enzyme Activities about Glucose Metabolism

The 10 mM PBS solution (pH 7.4) was added to the liver samples and then ho-
mogenated in ice. After the homogenates were centrifuged at 3000× g for 20 min at
4 ◦C, the liquid supernatant samples were collected and kept at a temperature of −80 ◦C
until it was ready to be examined. The quantification of protein was conducted using the
Bradford method [19]. The activities of key enzymes related to glycolysis, tricarboxylic acid
cycle (TCA), and glycogen synthesis in the liver samples were determined using diagnostic
kits from Jiancheng Biotech Co. (Nanjing, China). The activities of glycogen phosphorylase
(GPase) and glycogen branching enzyme (GBE) were assessed using enzyme-linked im-
munosorbent assay (ELISA) kits from Jiancheng Biotech Co. (Nanjing, China) and Comin
Biotech Co. (Suzhou, China), respectively.

2.5. RNA Extraction and Analysis of Gene Expression

The total RNA in liver was extracted using Trizol reagent (Invitrogen, Carlsbad,
CA, USA). Subsequently, cDNA samples were generated using the RT-PCR kit (Monad
Biotech, Wuhan, China), following the protocol published previously [17]. Furthermore, all
cDNA samples were kept at −80 ◦C for further real-time quantitative PCR detection and
analysis. The primers used in the present study of genes involved in glucose metabolism,
antioxidative response and immunity were listed in Table 2. β-actin and EF1α were both
served as internal reference genes. Real-time PCR amplification was carried out in a volume
of 25 µL with 12.5 µL of 2×SYBR Green Real-time PCR Master Mix (Takara, Dalian, China),
2 µL of cDNA mixture and 0.2 mmol each of primers. The real-time PCR temperature
profile for the genes was 95 ◦C for 5 min followed by 35 cycles of 10 s at 95 ◦C, 15 s at
TM (Table 2) and 40 s at 72 ◦C. After the amplification cycle of real-time PCR, the melting
curves were systematically monitored (65 ◦C temperature gradient at 0.05 ◦C/10 s from
65 to 95 ◦C). Each sample was run in triplicate and the relative expression levels of the
target genes were calculated using the 2−∆∆CT method [20].

Table 2. Primers for real-time qPCR used in this study.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Gene ID TM
(◦C) E-Values (%)

HK GGCTTCACCTTCTCATTTCC CCTCAACAGTCCCACCACA 119889994 57.5 101.6
PFK CTGTATAATCCCTGCCACCAT CACCACAAACACTCGCCTC 119904003 58.0 99.8
PK CACCAACCCATTCATTTGCA AGTGTCATCACCTCAGAGTAGCG 119897542 59.5 102.7

MPC2 ACTGGCCTGATCTGGTCC TGCCTTCATATCCTGCTTG 119904262 57.5 98.6
PDHx AAGATGCGTTGAGTCTGTTGAA TTGGGTCTGCTGCCTGTG 119893818 58.5 101.5

CS ACTCAAGTCGGGAAGGGTT CAGGTGCTTCAGGGCAAA 119905193 57.5 99.7
IDH ACCAATCCCATAGCCTCCATC TCCAGTGCCTCAGCGAACA 119904575 60.0 104.8

MDH GCTTCACCTTCTCCGTCCTG GGTTCTTCTCAATGCCGTTC 119897930 59.5 104.2
GYG1 GGAAACTGGTCGCACTCG GGGACGCTTCATCAGGGA 119910845 58.5 101.6
GYG2 TCCGTTCTAAGATGCTTCATTC TCAACTCCTCTGCTCCAAAA 119905587 57.5 98.8
UGPα GAGGAGTCGATCCAGCCCTAT CCAGACCGCCGTTCAGTT 119915305 59.5 102.3
GCS TGTCATCGGTCATTTCCACG CAGCACAGAGGTATCGTCCC 119918252 59.5 103.5
GBE ACGACTGGGTTCACTGGG TGTATGAGGCGACCTTTCC 119883477 57.0 101.4

NDUfa1 ATGTGGTATGAAATTCTGCCTAG CTCACCTTCCCTCCGTTG 119888751 57.5 98.6
ND1 CTCCCACATTCCCACGAT GCATGAGCTGGTCATAGCG 4100035 57.0 99.4
ND2 AAATACCCTAGCCATCATCCC CCTGTGAGCCCAGCGTTA 4100026 58.0 102.7

SDHb GCCGCTGTGGTGTTGTG TCTCCTGGAGTGTCTGGGTC 119886220 57.5 103.5
SDHc GGCATCGCCTTTCCGTTAT CGGTGCGGTAGAGTTCTGG 119901747 60.0 101.8
COX1 CCGAAACCTCAACACCACC TGAAATCATCCCGAACCCT 4100027 59.0 99.7
COX3 CATTATCGGCTCAACTTTCCT TCAATATCATGCTGCTGCTTC 4100031 57.5 102.4
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Table 2. Cont.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Gene ID TM
(◦C) E-Values (%)

ATP6 CACCCTCCTAATCCCTGTTC GAGATGTCCGGCTGTCAAA 4100030 56.5 100.8
Cu/Zn-SOD TGAGCAGGAGGGCGATTC GCACTGATGCACCCATTTGTA 119895678 59.5 102.7

Mn-SOD CAGGGATCTACAGGTCTCATT ACGCTCGCTCACATTCTC 119909030 55.0 98.5
CAT ACCTATTGCTGTCCGCTTCTC TCCCAGTTGCCCTCCTCA 119893048 59.5 104.8
GSS ACAGGAGCAAAGCAAGCA TTCCACCAAGAACATGACG 119905734 56.0 100.7
GR ACGCCATCACGAGCAGG CATCTCATCACAGCCCAAGC 119889417 59.0 103.2

GPX1b CAACCAGTTCGGGCATCA GGCATCCTTCCCATTCACA 119886925 59.5 101.8
GPX7 ACCAAGTCTCCTTCCCTCTG CCAATCAGGCTCCTTTCC 119900239 56.0 99.7
Nrf2 CAAAGACAAGCGTAAGAAGC CAGGCAGATTGATAATCATAGA 119904119 55.0 98.6

keap1b CCTTACTCCAGGCTGTCCG GAAATTACTTTGGTGGGTTTGT 119899192 58.5 103.1
C3 CGAGACCTGCTCCATCCTA TCTGGGTGAGTCGGTGCTT 119899478 59.5 101.7
C4 TGCTCGCACCCGAAACA CAGCCTCAAATCCACTCAGAAG 119897763 60.0 102.9

C8a TGGTGGCACAGAGTGTATTG GTTTCTTTGCAGGTGAAGCT 119902403 56.0 98.4
C8b AGGCAGGAGGTGGAAGAGTA AGCAGCCGCCAGCGTAAT 119902405 60.5 99.3
C8g CAGTGGTTGCGTTGATGTG GTCTATGTTCTGTGCGGGTG 119908612 57.0 100.3
LZM TGTCCAAGTGGGAGTCAGG GTTGCATCCATTCGCAGA 119914057 56.5 102.6
Hepc CTCTGCCGTCCCATTCAC GCATCATCCACGATTCCATT 119897237 58.0 101.9
β-actin TCCTGCGTCTTGACTTGG GATTTCCCTTTCGGCTGT 119885147 58.7 103.8
EF1α CGTCAAGGAAATCCGTCGTG GCGTAACCTGCGTTGATCTGG 119907150 59.5 102.3

HK, hexokinase-1; PFK, phosphofructokinase; PK, pyruvate kinase; MPC2, mitochondrial pyruvate carrier 2;
PDHx, pyruvate dehydrogenase complex component X; CS, citrate synthase; IDH, isocitrate dehydrogenase;
MDH, malate dehydrogenase; GYG1, glycogenin-1; GYG2, glycogenin-2; UGPα, UTP-glucose-1-phosphate
uridylyl-transferase; GCS, glycogen synthase; GBE, glycogen branching enzyme; NDUfa1, NADH:ubiquinone
oxidoreductase subunit A1; ND1, NADH dehydrogenase subunit 1; ND2, NADH dehydrogenase subunit 2; SDHb,
succinate dehydrogenase complex iron sulfur subunit B; SDHc, succinate dehydrogenase complex iron sulfur
subunit C; COX1, cytochrome c oxidase I; COX3, cytochrome c oxidase III; ATP6, ATP synthase 6; Cu/Zn-SOD,
Cu/Zn-Superoxide dismutase; Mn-SOD, Mn-Superoxide dismutase; CAT, catalase; GSS, glutathione synthase; GR,
glutathione reductase; GPX1b, glutathione peroxidase 1b; GPX7, glutathione peroxidase 7; Nrf2, nuclear factor
E2-related factor 2; keap1b, Kelch-like ECH associated protein 1b; C3, complement component 3; C4, complement
component 4; C8a, complement component 8a; C8b, complement component 8b; C8g, complement component 8g;
LZM, lysozyme; Hepc, hepcidin; β-actin, actin beta; EF1α, elongation factor-1α.

2.6. Statistical Processing

The results were presented as mean ± standard deviation (SD). All data were first
checked for data normality and homoscedasticity, and then underwent one-way analysis
of variance (ANOVA) using SPSS 26.0. Tukey’s multiple range test was selected for the
multiple comparisons among all the groups.

3. Results
3.1. Growth and Body Composition

The growth performance of largemouth bass fed different carbohydrate sources is
shown in Table 3. Dietary carbohydrate sources did not affect SR (p > 0.05), but significantly
changed the growth parameters of largemouth bass (p < 0.05). Fish had higher WG and SGR
fed TS, GTS, PS and GPS diets, compared to the GLU diet (p < 0.05). However, the lower
FCR was only observed in fish fed the GPS diet (p < 0.05). The lower VSI level was shown
in the PS group compared to the GTS group (p < 0.05). Although there were no significant
differences in the values of HSI among the GLU, GTS, and GPS groups (p > 0.05), the three
groups had higher HSI than the TS and PS groups (p < 0.05). The GLU diet significantly
decreased the CF value, which was lower than the other four diets (p < 0.05). The contents
of moisture, crude lipid and ash in the whole body were comparable among the five groups
(Table 3). However, the crude protein contents of the whole body in fish fed the TS and PS
diets were significantly higher compared to the GLU diet (p < 0.05).
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Table 3. Effects of dietary carbohydrate sources on growth performance and whole body composition
of largemouth bass (n = 3). Means in each row with different superscripts show significant differences
(p < 0.05).

Items GLU TS GTS PS GPS

IBW/(g) 9.99 ± 0.01 10.00 ± 0.00 9.98 ± 0.02 10.02 ± 0.01 9.99 ± 0.01
FBW/(g) 59.83 ± 0.54 b 64.45 ± 0.21 a 67.36 ± 0.62 a 66.19 ± 1.51 a 67.39 ± 0.88 a

WG/(%) 498.78 ± 4.70 b 544.84 ± 5.43 a 574.84 ± 6.90 a 560.62 ± 14.56 a 574.60 ± 9.15 a

SGR/(%/d) 6.74 ± 0.02 b 6.89 ± 0.05 a 6.98 ± 0.02 a 6.94 ± 0.05 a 6.98 ± 0.03 a

FCR 1.00 ± 0.02 a 0.98 ± 0.00 a 0.92 ± 0.01 ab 0.97 ± 0.01 a 0.86 ± 0.02 b

VSI/(%) 9.15 ± 0.23 ab 9.15 ± 0.25 ab 9.67 ± 0.18 a 8.64 ± 0.10 b 9.22 ± 0.09 ab

HSI/(%) 1.93 ± 0.06 a 1.31 ± 0.12 b 1.92 ± 0.01 a 1.12 ± 0.03 b 1.80 ± 0.09 a

CF/(g/cm3) 2.00 ± 0.01 b 2.21 ± 0.03 a 2.24 ± 0.05 a 2.29 ± 0.05 a 2.33 ± 0.05 a

SR/(%) 94.67 ± 1.33 96.00 ± 4.62 96.33 ± 3.53 96.00 ± 3.25 96.00 ± 4.00
Body composition (%)
Moisture 72.19 ± 0.17 72.52 ± 0.17 72.60 ± 0.21 72.36 ± 0.18 72.41 ± 0.22
Crude protein 16.02 ± 0.04 b 16.96 ± 0.06 a 16.63 ± 0.14 ab 16.82 ± 0.15 a 16.50 ± 0.31 ab

Crude lipid 7.58 ± 0.09 7.34 ± 0.07 7.55 ± 0.17 7.20 ± 0.03 7.26 ± 0.05
Ash 3.65 ± 0.03 3.79 ± 0.05 3.75 ± 0.06 3.68 ± 0.04 3.67 ± 0.02

IBW, initial body weight; FBW, final body weight; WG, weight gain; SGR, specific growth rate; FCR, feed
conversion ratio; VSI, viscerosomatic index; HSI, hepatosomatic index; CF, condition factor; SR, survival ratio.

3.2. Blood Cell Indexes and Serum Biochemical Indices

The counts of WBC and MON were lower in the GLU group than those in the PS
and GPS groups (p < 0.05) (Table 4). The lowest and the highest RBC counts were shown
in the GLU group and the TS group, respectively (p < 0.05). Although intermediate RBC
counts were mainly shown in the GTS, PS, and GPS groups, no marked differences were
observed among the starch groups (p > 0.05). In addition, there were higher values of HGB
and PLT and lower levels of MCV and NEU in the TS group compared to the GLU group
(p < 0.05). There were no differences in the values of HGB and MCV among the GLU, GTS,
PS and GPS groups (p > 0.05). The significantly lowest count of PLT was shown in the PS
group compared to the TS, GTS, and GPS groups (p < 0.05). The lowest NEU counts were
presented in the TS and GTS groups compared to the GLU, PS and GPS groups (p < 0.05).
Moreover, the lowest LYM count and the highest EOS count were both presented in the
GPS group compared to the GLU, TS, and GTS groups (p < 0.05). The values of HCT were
not influenced by dietary carbohydrate sources (p > 0.05).

Table 4. Effects of dietary carbohydrate sources on blood cell indexes of largemouth bass (n = 12).
Means in each row with different superscripts show significant differences (p < 0.05).

Items GLU TS GTS PS GPS

WBC/(109/L) 175.97 ± 2.03 c 180.00 ± 0.62 bc 175.42 ± 0.60 c 183.05 ± 1.17 b 189.28 ± 0.76 a

RBC/(1012/L) 2.13 ± 0.03 c 2.53 ± 0.01 a 2.28 ± 0.01 b 2.32 ± 0.01 b 2.31 ± 0.02 b

HGB/(g/L) 75.33 ± 1.33 b 82.00 ± 0.58 a 74.67 ± 0.67 b 78.33 ± 0.33 ab 76.33 ± 0.67 b

MCV/(fL) 152.07 ± 0.87 a 144.53 ± 0.68 b 149.30 ± 0.56 a 152.07 ± 0.37 a 151.33 ± 0.78 a

PLT/(109/L) 56.67 ± 0.88 bc 63.33 ± 1.45 a 60.00 ± 1.53 ab 53.67 ± 1.45 c 59.67 ± 0.88 ab

NEU/(109/L) 12.00 ± 0.10 ab 9.50 ± 0.15 c 9.63 ± 0.13 c 11.30 ± 0.15 b 12.17 ± 0.23 a

LYM/(109/L) 78.33 ± 1.07 a 77.33 ± 0.23 ab 77.67 ± 0.88 ab 74.97 ± 0.13 bc 72.73 ± 0.43 c

MON/(109/L) 11.53 ± 0.12 c 12.63 ± 0.12 bc 12.47 ± 0.32 bc 13.47 ± 0.32 ab 13.97 ± 0.33 a

EOS/(109/L) 0.10 ± 0.00 b 0.10 ± 0.00 b 0.10 ± 0.00 b 0.10 ± 0.00 b 0.33 ± 0.37 a

HCT/(%) 32.67 ± 0.49 34.63 ± 0.62 33.70 ± 0.29 33.77 ± 0.86 34.97 ± 0.35

WBC, white blood cell; RBC, red blood cell; HGB, hemoglobin; MCV, mean corpuscular volume; PLT, platelet;
NEU, neutrophil; LYM, lymphocyte; MON, monocyte; EOS, eosinophils; HCT, hematocrit.

The levels of HDL-C and TG were markedly decreased in the serum of the GLU group,
whereas their levels were significantly increased in the serum of the TS, GTS, PS and GPS
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groups (p < 0.05) (Table 5). In addition, dietary TS, GTS and PS significantly reduced the
LDL-C contents, compared to dietary GLU (p < 0.05). TC contents were markedly increased
in the TS, PS, and GPS groups compared to the GLU group (p < 0.05), and there were no
significant differences between the GLU and GTS groups (p > 0.05). Dietary GLU increased
the AST activities, compared to GTS, PS and GPS diets. Fish fed the PS diet had the lowest
glucose level in serum than the other four diets, accompanied by a significant decrease in
INS content (p < 0.05). The lowest GC content was shown in the GLU group compared to
the TS, GTS, PS, and GPS groups (p < 0.05), although there were no significant differences
in the GC levels among the four starch groups (p > 0.05). Dietary carbohydrate sources
significantly affected levels of serum hormones involved in metabolic and appetite indices
(p < 0.05). In GLU-fed fish, the concentrations of CCK were observably elevated, compared
to the other four groups (p < 0.05). Conversely, the level of AGRP was largely reduced by
the GLU diet (p < 0.05) (Table 5).

Table 5. Effects of dietary carbohydrate sources on serum biochemical indices and hormones of
largemouth bass (n = 6). Means in each row with different superscripts show significant differences
(p < 0.05).

Items GLU TS GTS PS GPS

HDL-C/(mmol/L) 1.33 ± 0.01 d 1.68 ± 0.02 a 1.47 ± 0.02 c 1.54 ± 0.04 bc 1.62 ± 0.04 ab

LDL-C/(mmol/L) 1.53 ± 0.04 a 1.27 ± 0.02 c 1.37 ± 0.01 bc 1.33 ± 0.03 bc 1.47 ± 0.05 ab

TG/(mmol/L) 5.71 ± 0.25 b 9.90 ± 1.85 a 9.87 ± 0.24 a 10.70 ± 0.20 a 10.53 ± 0.41 a

TC/(mmol/L) 4.88 ± 0.01 c 5.87 ± 0.27 ab 5.42 ± 0.22 bc 6.41 ± 0.08 a 6.31 ± 0.03 a

AST/(U/L) 44.42 ± 2.98 a 39.07 ± 3.09 ab 21.90 ± 0.40 c 21.73 ± 0.65 c 30.37 ± 1.53 bc

GLU/(mmol/L) 6.36 ± 0.01 b 6.62 ± 0.03 b 7.66 ± 0.26 a 4.42 ± 0.06 d 5.49 ± 0.24 c

GC/(ng/L) 248.02 ± 10.40 b 359.17 ± 10.16 a 361.74 ± 19.16 a 324.90 ± 17.64 a 363.22 ± 9.85 a

INS/(mIU/L) 8.69 ± 0.15 a 7.56 ± 0.16 ab 8.01 ± 0.42 a 5.73 ± 0.55 c 6.23 ± 0.23 bc

CCK/(pg/mL) 230.76 ± 9.94 a 117.44 ± 1.30 b 123.60 ± 6.42 b 104.85 ± 1.70 b 109.07 ± 11.33 b

AGRP/(mg/L) 10.94 ± 2.22 c 36.18 ± 1.88 ab 38.24 ± 0.78 a 28.33 ± 0.75 b 36.46 ± 2.50 ab

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides;
TC, total cholesterol; AST, aspartate aminotransferase; GLU, glucose; GC, glucagon; INS, insulin; CCK, cholecys-
tokinin; AGRP, agouti-related peptide.

3.3. Hepatic Enzyme Activities Related to Glucose Metabolism

PS diet significantly increased the HK, PK and MDH activities, and the acetyl CoA
content (p < 0.05) (Table 6). The effects of the GPS diet on the parameters above are similar
to those of the PS diet, except that the values of HK and MDH were lower than the PS
diet (p < 0.05). In contrast, fish fed the GLU diet displayed lower activities and content of
HK, PFK, IDH and MDH, and the acetyl CoA. Dietary carbohydrate sources also changed
glycogen contents and related enzyme activities. Fish fed the GLU and GPS diets exhibited
higher glycogen levels than the TS diet (p < 0.05). Meanwhile, the GPS group had the
highest GCS and GBE activities, and an intermediate GCS value was shown in the GLU
group (p < 0.05). Glycogenolytic enzyme activity (GPa) is independent of carbohydrate
sources in diets and no significant difference was found in the GPa among the five groups
(p > 0.05) (Table 6).

Table 6. Effects of dietary carbohydrate sources on glucose metabolic parameters in the liver of
largemouth bass (n = 3). Means in each row with different superscripts show significant differences
(p < 0.05).

Items GLU TS GTS PS GPS

HK/(nmol/min/mg prot) 0.27 ± 0.02 c 0.36 ± 0.01 b 0.34 ± 0.01 b 0.46 ± 0.00 a 0.33 ± 0.01 b

PFK/(U/mg prot) 3.22 ± 0.07 b 3.59 ± 0.10 ab 3.83 ± 0.08 a 3.33 ± 0.08 b 3.30 ± 0.17 b

PK/(U/mg prot) 124.24 ± 3.70 b 137.47 ± 2.26 b 154.55 ± 4.52 b 344.11 ± 26.30 a 350.09 ± 19.30 a

pyruvate/(U/mg prot) 2.91 ± 0.13 3.45 ± 0.19 3.11 ± 0.25 3.46 ± 0.14 3.35 ± 0.08
Acetyl CoA/(U/g prot) 1171.28 ± 23.21 b 1232.30 ± 26.05 ab 1178.46 ± 22.51 b 1277.18 ± 10.29 a 1290.00 ± 14.56 a

LDH/(U/g prot) 23.44 ± 0.58 26.30 ± 4.33 17.69 ± 0.54 21.26 ± 0.23 22.92 ± 0.28
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Table 6. Cont.

Items GLU TS GTS PS GPS

IDH/(nmol/min/mg prot) 113.38 ± 2.51 c 125.03 ± 2.97 bc 153.50 ± 7.41 a 127.16 ± 2.35 bc 138.35 ± 5.17 ab

MDH/(U/mg prot) 8.25 ± 0.11 c 12.07 ± 0.60 b 10.90 ± 0.16 b 13.59 ± 0.35 a 11.43 ± 0.10 b

GPa/(nmol/min/mg prot) 14.12 ± 0.99 13.35 ± 0.20 14.45 ± 0.11 14.01 ± 0.22 14.98 ± 0.48
GCS/(U/mg prot) 9.79 ± 0.07 b 7.89 ± 0.20 c 11.33 ± 0.11 ab 7.84 ± 0.61 c 12.85 ± 0.58 a

GBE/(IU/g prot) 214.54 ± 8.73 ab 212.41 ± 7.83 ab 230.73 ± 4.74 ab 205.32 ± 4.30 b 239.01 ± 7.38 a

LG/(mg/g) 154.54 ± 5.57 a 124.27 ± 6.14 b 149.86 ± 6.79 ab 133.61 ± 5.28 ab 159.92 ± 6.26 a

HK, hexokinase; PFK, phosphofructokinase; PK, pyruvate kinase; CoA, acetyl-CoA; LDH, lactic dehydrogenase;
IDH, isocitrate dehydrogenase; MDH, malate dehydrogenase; GPa, glycogen phosphorylase-a; GCS, glycogen
synthase; GBE, glycogen branching enzyme; LG, liver glycogen.

3.4. Relative Expression of Genes Involved in Glucose Metabolism

Dietary PS significantly upregulated the expressions of genes including HK, MPC2,
CS and MDH, while the increased expressions of IDH and PFK were found in the GTS
diet (p < 0.05) (Figure 1). Furthermore, fish fed the GPS diet showed dramatically higher
transcriptional levels of GYG1, GCS and GBE (p < 0.05) (Figure 2). The GTS group had a
similar gene expression pattern in glycogen synthesis as the GPS group, whose expression
were comparable between the two groups. Notably, the abilities of GLU diet to activate
glycolysis, tricarboxylic acid cycle and glycogen synthesis was less than that of the other
diets, which had lower mRNA levels of HK, PFK, PK, MPC2, PDHx, IDH, MDH, GYG1,
GYG2, UGPa and GBE (p < 0.05) (Figures 1 and 2).
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Figure 1. Effect of dietary carbohydrate sources on mRNA expression levels of genes involved in
the glycolysis and citric acid cycle in largemouth bass (n = 3). Bars with different superscripts are
significantly different (p < 0.05). HK, hexokinase-1; PFK, phosphofructokinase; PK, pyruvate kinase;
MPC2, mitochondrial pyruvate carrier 2; PDHx, pyruvate dehydrogenase complex component X; CS,
citrate synthase; IDH, isocitrate dehydrogenase; MDH, malate dehydrogenase.
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Figure 2. Effect of dietary carbohydrate sources on mRNA expression levels of genes involved in
the glycogen synthesis in largemouth bass (n = 3). Bars with different superscripts are significantly
different (p < 0.05). GYG1, glycogenin-1; GYG2, glycogenin-2; UGPα, UTP–glucose-1-phosphate
uridylyltransferase; GCS, glycogen synthase; GBE, glycogen branching enzyme.
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3.5. Relative Expression of Genes in the Respiratory Electron Transport Chain

Polysaccharide-starch sources significantly heightened the expression variations of
NDUfa1, ND2, SDHb, SDHc, and ATP6 compared with dietary GLU (p < 0.05) (Figure 3).
In addition, the expression levels of ND1 were notably increased in fish fed with TS and PS
diets, although there were no marked differences among the fish fed with GLU, GTS and
GPS diets (p > 0.05). Higher levels of COX1 and COX3 were shown in the TS, GTS and PS
groups compared with the GLU group (p < 0.05), while there were no differences between
the GLU and GPS groups (p > 0.05) (Figure 3).
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3.6. Relative Expression of Genes Involved in Antioxidant and Immune Capability

The expressions of antioxidant enzyme genes including Cu/Zn-SOD, Mn-SOD, CAT,
GPX1b, GPX7, and GR in the TS and GTS groups were markedly elevated, compared to the
GLU group (p < 0.05) (Figure 4). There was a similar trend in the expressions of the genes,
including Cu/Zn-SOD, Mn-SOD, CAT and GPX1b in the PS group. Higher mRNA levels
of Nrf2 were found in the PS group compared to the GLU and GPS groups (p < 0.05), while
there were higher mRNA levels of Keap1b in the GLU group compared to the GPS group
(p < 0.05). Notably, dietary GTS and GPS remarkedly upregulated the expression of GSS
(p < 0.05). Additionally, the significantly higher mRNA levels of C3, C4, C8a, C8b, C8g, LYZ
and Hepc were observed in the TS and PS groups compared to the GLU group (p < 0.05)
(Figure 5). Additionally, no significant differences were found in the C3, C8a, C8b, LZM,
and Hepc mRNA levels between the GLU and GPS groups (p > 0.05). The transcriptional
levels of all immune genes in the TS group were significantly increased compared with
the GTS groups (p < 0.05). A similar result was also shown between the PS and the GPS
groups (Figure 5).
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protein 1b.
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4. Discussion

An appropriate level of carbohydrate in feed can promote fish growth and save
protein by transferring amino acids from oxidative pathways [21,22]. Previous studies
have found the impact of different carbohydrate sources on growth performance varies
widely depending on their structure [14]. In this study, the WG, SGR, and CF of largemouth
bass juveniles fed with GLU were lower compared to other groups, indicating a poorer
utilization capability of glucose. That is likely because glucose can be rapidly absorbed
by fish, leading to a prolonged spike in blood glucose levels, which, in turn, results in
decreased growth [14,23–25]. In contrast, largemouth bass fed with polysaccharide-starch
sources obtained better growth efficiency and higher crude protein levels compared to
GLU group in this experiment, indicating a stronger carbohydrate utilization and protein-
sparing capability [14,25]. Similar results to this experiment were found in studies involving
species such as blunt snout bream Megalobrama amblycephala [26], Nile tilapia Oreochromis
niloticus [25], golden pompano Trachinotus ovatus [27], and swamp eel Monopterus albus [28].
These previous findings and our results indicated that largemouth bass could exhibit better
utilization of structurally complex carbohydrate sources [29].
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Compared with the GLU group, the polysaccharide groups resulted in higher HDL-C
and TG contents, and lower LDL-C contents, aligned with previous findings in white
sturgeon Acipenser transmontanus [30] and large yellow croaker Pseudosciaena crocea R. [31],
which were due to increased active endogenous lipid transport induced. Many studies
have proven that higher serum AST activity relates with liver damage and poor liver
health [32,33]. In this study, AST activities were heightened in the serum of the GLU
group, indicating that dietary GLU could impair liver health in largemouth bass to some
extent. Moreover, endogenous hormones always play crucially regulatory functions in
glucose metabolic process in fish species [17,34,35]. Generally, serum glucose level can
be reduced by INS via increasing glucose uptake, while increased by GC via elevating
glucose production in response to various external nutrients [36–38]. Therefore, higher GC
and lower INS contents were also shown in the PS and GPS groups, which might respond
to variations of corresponding serum glucose contents [35,38]. In addition, many studies
have reported higher levels of AGRP could increase the appetite in animals [17,35,39].
Considering the lower FCR in the GTS and GPS groups, it is suggested that gelatinized
polysaccharide (GTS and GPS) could improve feed utilization and subsequently enhance
growth by increasing AGRP contents in largemouth bass.

Various carbohydrate sources can exert different effects on glucose metabolic capabili-
ties by regulating these crucial enzymes (HK, PK, PFK, IDH, and MDH) involved in glycol-
ysis and the TCA cycle in animals. The current investigation revealed that polysaccharide-
starch sources had notable impacts on the variations in enzyme activities and mRNA
expression levels of HK, PK, PFK, IDH, and MDH in largemouth bass, which was consis-
tent with previous studies in giant grouper Epinephelus lanceolatus larvae [24], Nile tilapia
O. niloticus [25] and blunt snout bream M. amblycephala [40]. In general, MPC2 transports
cytoplasmic pyruvate into mitochondria, and subsequently, PDH converts pyruvate to
acetyl CoA for further metabolism through the TCA cycle. Our results showed that higher
expression levels of MPC2 and PDH, as well as higher contents of pyruvate and acetyl CoA,
were observed in the TS, GTS, PS, and GPS groups, compared with GLU group, which was
in line with results in Nile tilapia O. niloticus [25]. It indicated that polysaccharide-starch
sources could notably improve carbohydrate utilization via activating glycolysis and TCA
cycle in largemouth bass. In addition, higher hepatic glycogen contents were shown in
the GLU group compared with the TS group, consistent with findings in Amur sturgeon
Acipenser schrenckii [41]. Meanwhile, slightly higher glycogen contents were also found in
the GTS and GPS groups compared to the TS and PS groups, respectively, which was similar
to results in European sea bass Dicentrarchus labrax juveniles [42], indicating gelatinized
starch could induce glycogen synthesis in largemouth bass. Moreover, as key regulating
molecules in the glycogen synthesizing system, the levels of GYG1, GCS, and GBE were
also influenced by dietary carbohydrate sources, exhibiting similar variation trends to those
of glycogen contents. Higher expression of GYG1, GCS, and GBE in the GTS and GPS
groups also verified that gelatinized starch had more ability to synthesize glycogen that
partly explained why they could be better utilized in the diet as energy sources. However,
some reports also found glycogen contents were not changed, independently of the degree
of starch gelatinization in blunt snout bream M. amblycephala [43]. These differences may be
attributed to different species of fish. Given these findings and growth indices, the results
suggested that gelatinized starch could improve carbohydrate utilization by activating
glycogen synthesis in largemouth bass.

It is well-known that adenosine triphosphate (ATP) synthesis is primarily generated
during the processes of mitochondrial oxidative phosphorylation (OXPHOS) in eukaryotic
cells [44]. OXPHOS is carried out by mitochondrial respiratory electron transport chain
(ETC) during nutritional metabolic processes of different nutrients, including carbohydrate
sources [45]. Our study found that the expressions of key functional genes, such as NDUfa1,
ND2, SDHb, SDHc, and ATP6 in ETC, were significantly increased in polysaccharide-starch
(TS, GTS, PS, and GPS) groups compared to the GLU group. These findings suggested
that polysaccharide sources could activate the respiratory chain complexes and enhance
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oxidative phosphorylation by increasing the expression levels of these key functional genes
in the ETC through transcriptional modifications in largemouth bass [43,45]. Meanwhile,
ROS is generated during the activation of respiratory chain complexes and oxidative
phosphorylation [46]. In order to alleviate the potential oxidative stress and maintain redox
homeostasis, aerobic organisms have evolved numerous antioxidant enzymes, including
SOD, CAT, GSS, GPX, and GR, etc. [32,46]. In this study, we observed markedly elevated
levels of Cu/Zn-SOD, Mn-SOD, and GPX1b in the four starch groups compared to the
GLU group. This indicated that polysaccharide sources enhanced antioxidant capabilities
in largemouth bass. Furthermore, the expression levels of Cu/Zn-SOD, Mn-SOD, GPX1b,
and GR were higher in the TS and GTS groups than in the PS and GPS groups, suggesting
that TS and GTS may be more effective at improving antioxidant status in largemouth
bass. Moreover, our results also found higher Nrf2 levels and lower Keap1b levels were
mainly shown in the PS group and the GPS group compared to the GLU group, respectively,
consistent with previous findings in fish species with better antioxidant capability [32,47].
Given the pivotal roles of Nrf2/Keap1 in initiating the expression of antioxidant enzymes,
it demonstrated that adequate polysaccharide sources could contribute to maintaining
redox homeostasis and improve antioxidant capability in largemouth bass.

The complement system plays an essential role in both innate and adaptive immune
responses, serving to alert the host of potential pathogens and assist in their removal [46].
Increasing studies on fish have verified that the response of the complement system is
strongly correlated with dietary carbohydrate sources [48,49]. In the current study, we
found that polysaccharide carbohydrate sources more effectively initiated immune function
compared to monosaccharide, and that ungelatinized starch was superior to gelatinized
starch in this respect. For instance, the TS diet significantly increased C3 and C4 mRNA
levels, indicating that the complement pathway was activated, thus enabling a beneficial
response to inflammation [49]. Additionally, activated C3 and/or C4 are known to as-
sist in the recognition and phagocytosis of microbes by phagocytes such as neutrophils,
macrophages and monocytes [50,51]. While the TS group in Table 4 showed a lower number
of NEU and MON, the increased C3 and C4 levels likely facilitated the bactericidal effect
of these phagocytes in the blood by enhancing their phagocytic capacity, rather than by
increasing the number of blood cells. The higher value of RBC in Table 4 suggested that
TS-fed fish had a very robust immune defense system, compared to those fed other starch
sources, in line with a previous study in cobia (Rachycentron canadum Linnaeus.) [14]. More-
over, upregulation of C8a, C8b and C8g (downstream gene of C3 and C4) in TS-fed fish
further promoted the formation of the membrane attack complex, which led to cytolysis of
pathogens. The findings indicated that tapioca starch provided a higher level of immunity
through accelerating complement-mediated bactericidal and lytic effects in fish. Lysozyme,
another key factor of innate immunity, causes the lysis of bacterial walls and is often used to
assess the immune status in aquatic animals [52]. Our results showed that fish fed with the
TS diet had higher activities of LZM at the transcriptional level. This demonstrated again
that the TS diet exhibited a greater ability to improve the innate immunity of largemouth
bass. Data previously proved that ungelatinized starch had a significant effect on activating
the immune function [12]. In this study, the mRNA levels of all the genes above described
in the GTS group were lower than that of the TS group, in agreement with the results of
previous research [10,11]. Antimicrobial peptides such as Hepc also participate in fish
innate immunity, produced primarily in the liver [53,54]. A growing body of studies has
reported that prior to infection and after challenged by pathogenic bacteria (Aeromonas
hydrophila and Pseudomonas fluorescens), Hepc can down-regulate pro-inflammatory markers
or directly kill bacteria to protect fish against inflammation and bacterial infection [55–60].
Our study found that Hepc expression was increased induced by dietary TS, followed by
PS and GPS, indicating better immunomodulatory effects. In short, our results revealed that
ungelatinized tapioca starch has a more positive effect on the immunity of largemouth bass.
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5. Conclusions

In summary, compared with GLU, dietary starch sources (TS, GTS, PS and GPS) exhib-
ited better growth performance and increased the crude protein content of the whole body
in largemouth bass. Meanwhile, dietary starch sources (TS, GTS, PS and GPS) improved
carbohydrate-utilizing capability via activating glycolysis, TCA cycle, mitochondrial oxida-
tive phosphorylation and glycogen synthesis in largemouth bass. In addition, antioxidant
abilities were significantly elevated in the TS and GTS groups, and immune responses were
notably promoted in the TS and PS groups compared with the GLU group. This study
provides new information for selecting carbohydrate sources in artificial feed and helps
improve fish health in farmed largemouth bass.
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