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Abstract: The application of Artificial Intelligence (Al) across various industries necessitates the
acquisition of relevant environmental data and the implementation of Al recognition learning based
on this data. However, the data available in real-world environments are limited and difficult to obtain.
Construction sites represent dynamic and hazardous environments with a significant workforce,
making data acquisition challenging and labor-intensive. To address these issues, this experimental
study explored the potential of generating synthetic data to overcome the challenges of obtaining
data from hazardous construction sites. Additionally, this research investigated the feasibility of
hybrid dataset in securing construction-site data by creating synthetic data for scaffolding, which
has a high incidence of falls but low object recognition rates due to its linear object characteristics.
We generated a dataset by superimposing scaffolding objects, from which the backgrounds were
removed, onto various construction site background images. Using this dataset, we produced
a hybrid dataset to assess the feasibility of synthetic data for construction sites and to evaluate
improvements in object recognition performance. By finding the optimal composition ratio with
real data and conducting model training, the highest accuracy was achieved at an 8:2 ratio, with a
construction object recognition accuracy of 0.886. Therefore, this study aims to reduce the risk and
labor associated with direct data collection at construction sites through a hybrid dataset, achieving
data generation at a low cost and high efficiency. By generating synthetic data to find the optimal ratio
and constructing a hybrid dataset, this research demonstrates the potential to address the problems
of data scarcity and data quality on construction sites. The improvement in recognition accuracy of
the construction safety management system is anticipated, suggesting that the creation of synthetic
data for constructing a hybrid dataset can reduce construction safety-accident issues.

Keywords: synthetic data; hybrid dataset; object detection; construction sites

1. Introduction
1.1. Background and Purpose of Research

The application of Alin construction is gaining momentum, with Al being utilized not
only in architecture and structural engineering but also in intelligent disaster prevention
and reduction [1]. To effectively deploy Al across various settings, it is crucial to gather
data specific to each environment. For instance, developing an Al solution for detecting
cracks in concrete requires a vast array of crack images collected from different settings [2].
However, in reality, data are finite, and obtaining training data from real-world environ-
ments demands considerable time and effort [3]. Consequently, there is a growing emphasis
on the importance of and demand for securing training data, especially in construction
sites, where such efforts are increasingly recognized. Nonetheless, existing research on
acquiring training data for construction sites faces several limitations. First, construction
sites are inherently dynamic and hazardous, characterized by frequent changes and a large
workforce. The traditional approach to collecting Al training data at construction sites,
i.e., direct onsite data acquisition, poses significant risks. Given the construction industry’s
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reputation as one of the most hazardous industries [4], gathering data directly from these
environments is fraught with safety concerns. An alternative, gathering data in a virtual
environment instead of through onsite photography or videography, offers a safer and
more quantifiable method. However, data obtained from existing virtual reality typically
suffer from limited backgrounds due to the labor-intensive and time-consuming costs
associated with background creation. Consequently, they fail to reflect the complex and
dynamic background characteristics of actual construction sites, and they do not capture
the diversity and continuous change inherent to construction-site environments. Accord-
ing to an existing study, changing backgrounds make it challenging to identify objects
consistently [5]. Therefore, the efficacy of object recognition can greatly vary with the
dynamics of the site’s background, underscoring the need for data collection methods
that incorporate the authentic and variable backgrounds of construction sites to achieve
meaningful outcomes.

This study aimed to address the limitations of previous research and capture the
dynamics of construction sites by separating and synthesizing objects and backgrounds
to generate synthetic data of scaffolding, which is often a cause of high incidences of fall
accidents on construction sites. Throughout this process, the effectiveness of synthetic
data creation, the potential to resolve data scarcity issues using synthetic data, and the
exploration of various composition ratios to enhance object recognition performance were
investigated. Additionally, by creating backgrounds that match the object’s environment,
the goal was to secure data suitable for each site and reduce the need for on-site real data
collection through the optimal mix of synthetic and real data within a hybrid dataset. By
constructing hybrid datasets and assessing the accuracy across different composition ratios,
this research sought to empirically validate how hybrid datasets can address data scarcity
and quality issues and aimed to realize a cost-effective and efficient data construction
method through the generation of synthetic data.

1.2. Research Scope and Method

The objective of this study was to acquire data through synthesis, effectively distin-
guishing between the object and background to capture the specific characteristics of the
construction site. The background represents the construction environment, while the
focal object is defined as the frame scaffolding. Frame scaffolding is extensively utilized in
construction sites, and falls from such structures are a common occurrence. The imperative
of Al-based recognition for identifying frame scaffolding lies in its potential to enhance
worker safety and detect potential errors in scaffolding assembly. Additionally, acquiring
training data for frame scaffolding is essential to enhance Al recognition performance.
Given the linear structure of frame scaffolding, as opposed to a planar one, it allows for
the visibility of all scenes positioned behind it. Consequently, the recognition of frame
scaffolding, which is a linear object, is anticipated to pose greater difficulty compared to
other objects.

The dataset utilized for the benchmarking training performance was captured through
video recordings at the construction site. This study’s methodology and procedures are
illustrated in Figure 1. In the initial phase, the frame scaffolding, identified as the object
of interest, was segmented from its background using the real-world images acquired. In
terms of the background, a comprehensive training dataset was developed by gathering
photographs and videos that accurately depict the construction site’s atmosphere. These
elements were then synthesized with the construction site backgrounds, integrating the
isolated objects. This synthesized training dataset was further augmented using Roboflow,
an advanced platform designed for image dataset management and enhancement of model
development processes. Roboflow offers key features, such as image annotation, labeling,
and augmentation. Following the augmentation, the enriched synthetic dataset underwent
labeling and was processed using the YOLOVS5 algorithm for training. The research included
an analysis of the outcomes by modifying the proportion of synthetic to real data within the
dataset, evaluating the dataset’s efficacy at various ratios. The structure of the remainder of
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this document is as follows. Section 2 engages in a literature review pertinent to training
datasets. Section 3 details the methodology employed for generating a synthetic dataset
specific to construction sites, encompassing strategies for data collection, synthesis, labeling,
and augmentation. Section 4 outlines the results from the performance evaluation of the
hybrid dataset. Section 5 concludes the document with a summary of our findings and
their implications.

[ Investigation and analysis of relevant existing research
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Figure 1. Research progress and methodology.

2. Literature Review

Research is being conducted to improve object recognition performance in construction
sites by developing neural network-based architectures and by generating synthetic data.
In [6,7], a network that predicts parameters like the center point, width, and angle of
construction vehicles to detect them accurately and efficiently was proposed. Additionally,
ref. [8] introduced a detection method based on the Enet neural network for identifying
fenced at construction sites. The algorithm requires reconstruction to suit new objects, and
network design also demands a significant variety of data. Thus, this study focused on
generating synthetic data to improve recognition performance and conducted a literature
review to explore this method. The construction of an Al training dataset is categorized
as illustrated in Figure 2. It primarily involves two approaches: collecting data from real
environments and generating virtual training data through synthesis. In the case of data
collected from real environments, the process can be challenging due to the dynamic nature
of the surroundings or the presence of hazardous conditions. Consequently, significant
research is focused on the synthesis of data within virtual environments as a strategy to
amass adequate training data, even under adverse conditions.
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Figure 2. Method for obtaining training data.
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Table 1 summarizes the methods for generating synthetic data as identified in previous
studies. The key term ‘Synthetic Image Data Generation” was used to conduct searches
on Google Scholar and SCIENCE ON. The studies listed in the table span from 2017 to
2023, indicating that they were conducted within the past seven years. These papers are
categorized based on the synthetic data generation method employed. There are three
primary synthesis approaches: in a 3D environment, in a 2D environment, and a hybrid
of both. Research related to 3D environment synthesis utilizes three-dimensional (3D)
programs and game engines. For instance, data from tools like the Unity Engine, commonly
used as a game development platform, are transformed from 3D graphical images or videos
into 2D image data for use as training material. One notable study that focused on image
synthesis for underwater object recognition using Convolutional Neural Networks (CNNs)
involved rendering the objects after 3D CAD modeling [9]. However, employing game
engines or 3D programs for synthesis is time-consuming, technically demanding, and
thus costly. To address these constraints, ‘object infusion” and ‘learning-based’ synthesis
methods have been developed. For example, research on generating synthetic data involves
modeling objects in a 3D environment and integrating them into 2D background images [10].
Nevertheless, this approach is limited to generating synthetic data only for the objects that
have been modeled, and it lacks realism, failing to accurately represent physical objects.
The ‘learning-based” method, particularly using Generative Adversarial Networks (GANs),
offers a solution by allowing for the generation of synthetic images from existing data. This
approach not only facilitates the expansion of insufficient training datasets through GANs
but also significantly increases the sample size of the dataset, showcasing its potential for
enhancing data diversity and quality.

Table 1. Comparative table of research related to synthetic data generation.

Contents
Method Ref. I Model Performance
Method Description Used Metric
9] Utilized 3D CAD models in Blender for MASK mAP: 0.9
3D Modeli underwater object detection. R-CNN o
odelng [11] Constructed 3D environment with Blender for CCN Synthetic4000
food identification inside refrigerators. mAP: 24
Generated objects using 3D modeling programs, Real5000
[10] integrating them into 2D backgrounds for DNN +syn5000
construction site analysis to detect worker. 67.8%
3D + 2D [12] Comblne.d BD BIM programs w1t.h GAN for RCNN 71.6%, 84.9%
interior building analysis.
[13] Integrated CAD modeling and 3D program YOLOv4 Synthetic300
) rendering with GAN for object modeling. PVNet mAP: 0.93
[14] Applied the SlnGAN-Seg n}odellfor tumor UNets+ 10U 0.79
GAN detection in visceral imaging.
[15] Utilized AE-G{%N for jellyfish detection FCN 71.4%
in the sea.
[16] Backgrqund removal e'md (?b]ect mse]{tlon YOLOVS mAP 0.593
technique for generic object analysis.
D [17] Enhanced object insertion with background YOLOvV4, synthetic
removal and shadow effect for person detection. YOLOv5 mAP 0.873,0.864
Object infusion Applied background removal, object insertion,
) [18] and blur processing for traffic bucket CNN -
detection on water.
Our Developed a novel method combining object Hybrid
research insertion, generation hybrid dataset and training YOLOvV5 dataset
for scaffolding detection at construction sites. mAP 0.892
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The initial exploration of data training utilizing Generative Adversarial Networks
(GANSs) led to the creation of a synthetic image dataset for medical technology applica-
tions [14]. Similarly, a previous study generated synthetic data for jellyfish in marine
environments using deep learning techniques [15]. Moreover, numerous studies, such as
the generation of dental image data employing Deep Convolutional GANs (DCGANSs) [19],
are underway. These efforts are significant, as they address the shortage of training data
for deep learning by enlarging the dataset and enhancing efficiency. The strategy of de-
ploying algorithms like GAN and DCGAN to enrich images and amplify the sample size
through modifications in object characteristics primarily aims to increase data volume,
rather than its diversity. Achieving diversity through extensive alterations, such as vari-
ations in the background environment and object positioning, proves challenging when
augmenting with a constrained dataset. In contexts like construction sites, not only is a
large sample size vital but also data from diverse environments. As such, synthesizing
varied backgrounds and objects through the ‘insert object” method becomes crucial for
attaining significant diversity.

The “insert object” technique allows for the incorporation of objects into pre-existing
background images without the necessity for configuring specific settings via a 3D program.
This approach facilitates the acquisition of a substantial volume of training data and the
enhancement of data diversity, circumventing the need for background 3D modeling, even
in scenarios of data scarcity. For instance, in a study applying the object insertion technique,
data were synthesized by isolating traffic cones from images of roads submerged under
water [18]. By leveraging the object insertion method, it is feasible to generate novel data by
synthesizing backgrounds and objects, thereby achieving diversity through the alteration
of object types and locations.

Table 2 contrasts the processes involved in constructing synthetic datasets. The asterisk
(*) in the table denotes tasks that required time and labor investment. The approach of
generating a training dataset via deep learning techniques, such as GAN, primarily aims
to enlarge the sample size, often at the expense of diversity. Furthermore, this method
is characterized by significant investments in time and technical expertise. Hence, for
a construction site, with its constantly evolving environment, a method that prioritizes
diversity, like object insertion, becomes crucial. The generation of synthetic data neces-
sitates data that align with the specific environmental requirements, suggesting that Al
applications for construction sites demand training data that accurately represent the site’s
visual characteristics. Previous research has been limited by a lack of consideration for the
diversity of construction environments and backgrounds in the ‘object insertion” method,
and there is an absence of studies on creating synthetic data for linear objects like scaffold-
ings, which are prone to high rates of fall accidents. In the constantly changing environment
of construction sites, securing various training data through the ‘object insertion” method
appears increasingly necessary. Therefore, this study explored the creation of synthetic data
using the object insertion method for scaffolding, which has a high rate of fall incidents but
low object recognition rates due to its linear object characteristics, to confirm the potential
of hybrid datasets in obtaining data for construction sites.

Table 2. Synthetic dataset construction process (* Tasks that required time and labor investment).

Method

Process Summary Labor-Intensive Aspects

Generative Adversarial
Network
(GAN)

3D Modeling platform

The method followed by the creation of the - Generation of GAN architecture *
GAN architecture and training the model to - Training of GAN model *
generate synthetic images.

The process involves constructing a detailed . Construction of 3D environment *

3D environment, specifying object properties, . Specification of object properties *
and then generating images.
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Table 2. Cont.

Method Process Summary Labor-Intensive Aspects
This approach includes GAN structure - Modeling *
3D Modeling platform + creation and training, and it concludes with - Generation of GAN architecture *
GAN the rendering of images and the production - Training of GAN Model *
of multi-angle views. - Rendering *
This method involves collecting real-world
2D Object Insertion data, removing backgrounds, synthesizing - Background removal

new images, and augmenting the dataset for
greater diversity.

3. Construction Site Hybrid Dataset Creation

Figure 3 illustrates the concept of generation synthetic data and construction hybrid
dataset. For hybrid dataset construction, both real and synthetic datasets are needed. In
Figure 3, the blue indicates the dataset used for generating the synthetic dataset, and
the gray indicates the real dataset. The first stage involves data collection and synthesis,
focusing on the synthesis of scaffold objects and construction background images. The
second stage encompassed data labeling and augmentation, while the third stage involves
constructing hybrid dataset.

Remove.bg .
Hybrid Dataset
Object Bag‘sfmt‘ﬂd V;?]T . Construction
Set Jec DaVinci Resolve Robo flow
Extraction

Background : <

af)bb-l:c‘:n Synthetic Labeling and Synthetic

e Dataset Augmentation Dataset

Synthesis &

Figure 3. Concept of generation synthetic data and construction hybrid dataset.

3.1. Data Collection and Synthesis

The synthesis of data is detailed in Figure 4. Initially, necessary data comprising con-
struction site backgrounds and construction objects for synthetic data creation were com-
piled. Background data, representing construction sites, were sourced from photographs
taken at actual sites. With regard to frame scaffolding, to ensure diversity reflective of actual
construction site usage, datasets with redundant shapes were eliminated, favoring a collec-
tion of varied configurations. To enhance the diversity of object types, we utilized different
types of scaffolding as objects. Figure 4 illustrates the method of generating synthetic data,
where simple images depict scaffold images used for object synthesis. The background data
consist of construction site images where scaffolding can be placed on the floor. Simplified
images were produced by separating the backgrounds from the collected data using ‘re-
move.bg’, an Al-powered online service tool designed for automatic background removal
from images. ‘Remove.bg’ is a free online tool that facilitates the quick and easy removal
of backgrounds from objects. However, when removing backgrounds from scaffolding,
which consists of thin lines, there is a high likelihood of improper separation if the color of
the scaffolding closely resembles that of the background. Therefore, this study primarily
utilized scaffolding data with white backgrounds. If an algorithm capable of effectively
separating objects form their backgrounds is developed in the future, it could significantly
enhance both realism and convenience. The total number of construction site background
images collected was 302. Synthetic data were then generated by superimposing objects,
from which backgrounds were removed, onto these images. This object insertion process
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utilized the ‘DaVinci Resolve’ software, version 18, renowned for its advanced image- and
video-editing features.

Remove.bg
- Background = M |
ackgroun E £
gond | R IR A
Object = | ’l: [——
Extraction f !.Ffzi ! N aVinci Resolve
Object i Simple Images Background
e b ¢ Object
Synthesis

Synthetic Images

o
Background Images

Figure 4. Synthetic data-generation method.

Deep-learning models process data at the pixel level. Consequently, when an image
is enlarged or reduced, it is perceived as a distinct image by the model. Enhancing the
training dataset through image-processing techniques is instrumental in improving deep
learning-model performance. This study sought to augment the volume of data through
data synthesis and augmentation techniques. In the data creation process, synthetic images
were generated by resizing and repositioning, resulting in the production of 280 synthetic
scaffolding frame images. This approach facilitated an increase in diversity using the
existing limited dataset, without the need for additional data collection. The synthesized
data, presented in Figure 5, were created in video format, which contains more information
than static images, indicating a high capability for generating substantial training data from
a single source.

Figure 5. Frame scaffolding synthesis data.

3.2. Data Labeling and Augmentation

To evaluate performance, image data synthesized from construction sites and objects
were annotated and labeled frame by frame using VOTT (https://github.com/microsoft/
VoTT) (Visual Object Tagging Tool developed by the Commercial Software Engineering
group at Microsoft in Israel), a freely available open-source software framework designed
for image annotation and labeling. Figure 6 illustrates the labeled image data and the yellow
box indicates synthesized frame scaffolding. After labeling 280 images using synthetic data,
the dataset underwent an augmentation process in Roboflow. Securing data in various
environmental conditions such as brightly lit or dark areas is essential. However, the labor


https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT

Buildings 2024, 14, 1454

8 of 14

required to acquire such data in the real world is significant. To overcome the challenges
of obtaining diverse training data in realistic environments, adjustments in saturation,
brightness, and exposure were made to enhance environmental diversity. Additionally,
to further expand the dataset, augmentation techniques such as flip, crop, noise, and
cutout were employed, with the augmented data displayed in Figure 7. The yellow box
in Figure 7 indicates synthesized and augmented frame scaffolding. VOTT also enables
the conversion of video data into image data, which are subsequently transformed into
textual data via labeling. As a result, this process yielded 2000 frames of image data for
scaffolding synthesis.

Figure 6. Labeled synthetic data images.

Figure 7. Labeled synthetic data using augmentation techniques.

3.3. Construction Hybrid Dataset

To experiment with the highest object-recognition performance across different ratios,
the study constructed a hybrid dataset by adjusting the proportion of real and synthetic
data. The dataset’s classification by type is presented in Table 3. The ‘real dataset’ comprises
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1100 images for training, 830 for validation, and 317 for testing, totaling 2247 images. The
test dataset consists of 317 images, utilizing the same real data to evaluate the performance
across different composition ratios. The synthetic dataset includes 1100 training images
and 950 validation images. The Hybrid Dataset 2:8 splits into 360 real images (20%) and
1440 synthetic images (80%) from a total of 1800 images. The ‘Hybrid Dataset 5:5” is
composed of 850 real images (50%) and 850 synthetic images (50%), totaling 2017 images,
including the testing set. Of these, hybrid datasets are allocated into 1300 for training and
400 for validation. All four datasets were tested using the same set of 317 images. This test
set contained images from the real dataset not used in training or validation.

Table 3. Classification table by dataset type.

Dataset
Dataset Type Training Set ~ Validation Set Testing Set Total Data
Real dataset 1100 830 317 2247
Synthetic dataset 1100 950 317 2367
(zlfeilf%d;}l:tf::ic) 1200 600 317 2117
Hybri‘;?ataset 1300 400 317 2017

4. Validation
4.1. Validation Scenario

For data validation, the labeled synthetic data were used to train the YOLOv5 model,
facilitated by a specially developed algorithm. YOLOVS5 developed by Ultralytics, was
selected for model training and performance evaluation due to its excellent balance of speed
and accuracy in object detection task. The YOLO model has shown significant improve-
ments in inference speed and model size. In the context of object recognition at construction
sites, real-time detection is crucial for future applications. Therefore, YOLOYv5, with its
superior balance of speed and accuracy, was utilized for this purpose. This algorithm
manages the training process and evaluates the model’s performance metrics, such as
accuracy and loss. The training efficacy of both synthetic and real data was assessed using
this algorithm. The YOLOv5s model was deployed in Python 3.10, on the Google Colab
server. The datasets were classified prior to model training. During the training phase, the
model underwent 100 epochs with a batch size of 16, and images were resized to 416 x 416
to optimize GPU memory usage.

4.2. Results of Validation

In this study, precision and mean average precision were selected as the evaluation
metrics. Precision measures the proportion of positive predictions that are actually correct.
In fields such as scaffolding, where safety is paramount and numerous fall accidents occur,
minimizing the number of incorrect object detections by the model is crucial. Therefore,
by assessing precision, the aim is to reduce false alarms and ensure reliability in real
danger situations. The performance of data-driven algorithms is often assessed using
precision, recall, and mean average precision (mAP). Precision, as defined by Formula (1),
represents the algorithm’s accuracy in identifying true-positive results among all positive
predictions made. mAP, the mean of the average precision, serves as an overall indicator
of the algorithm’s object detection performance, with AP representing the area under the
precision-recall (P-R) curve. The closer an algorithm’s AP is to 1, the better its detection
performance. Therefore, precision and recall values are instrumental in evaluating an
algorithm’s training efficacy.

TP

Precision — — 1L 1
recision P+ TP (1)
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In this experiment, we tested the object-detection capabilities of the synthetic data.
Table 4 presents the test results based on the dataset classification. The test revealed that
the dataset comprised entirely of real data achieved the highest training performance, with
amAP of 0.989. In contrast, the dataset consisting entirely of synthetic data showed a lower
performance, with a mAP of 0.518. Nonetheless, the YOLOv5 model’s performance can
be improved by integrating real and synthetic data. Among the hybrid datasets, a ratio of
8:2 (synthetic to real) yielded better training results than a 5:5 ratio, with metrics nearing
those of the real data. The performance metrics for a hybrid dataset (2 real/8 synthetic) are
presented in Table 5. The results indicate an accuracy of 0.712, an F1-score of 0.830, a recall
of 0.787, and a precision of 0.879. These metrics demonstrate the efficacy of integrating
synthetic data with real data to train detection models. Figure 8 illustrates the test graph
for the hybrid dataset (2 real/8 synthetic), including (a) the precision curve and (b) the
mAP graph. In the graph, the light line shows the actual metric values at each step, while
the bold line, which applies a smoothing factor of 0.6 to reduce short-term noise and
exceptional fluctuations in the data. Both (a) precision and (b) mAP values saw significant
improvement after 20 epochs, stabilizing at 1 after 70 epochs.

Table 4. Test results by dataset classification.

Dataset Type P (Precision) mAP50

@ Real dataset 0.983 0.989

@ Synthetic dataset 0.892 0.518
(® Hybrid dataset

(2 real/8 synthetic) 0.879 0.892
® Hybrid dataset

(5 real /5 synthetic) 0.862 0.779
® Hybrid dataset

(8 real /2 synthetic) 0.852 0.886

Table 5. Performance metrics of hybrid dataset (2 real /8 synthetic).

Dataset Accuracy F1-Score Recall Precision
Hybrid Dataset
(2 real/8 0.712 0.830 0.787 0.879
synthetic)
metrics/precision metrics/mAP_0.5
tag: metrics/precision tag: metrics/mAP_0.5
1 - _
W] T e —
08 ¥ 0.8 | T |
/ /
06 ’_n.)l" 06 J,'F‘
[ o Al
0.4 f & ‘; i
02 / 02 f
|
00— — 0 -
0 10 20 30 40 50 80 70 &0 90 100 0 10 20 30 40 30 60 70 80 90 100
(a) (b)

Figure 8. (3 Hybrid dataset (2 real/8 synthetic) test graph: (a) precision curve and (b) mAP curve.

Figure 9 explores how varying the mix ratio of real to synthetic data in the frame
scaffolding dataset affects the training performance. The graph indicates that accuracy
does not linearly increase with a higher proportion of real data, highlighting that the
performance boost is not unconditional with an increase in real data. Thus, when creating
a hybrid dataset through synthetic data generation, finding the optimal balance between
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real and synthetic data is essential. The graph demonstrates that, while the dataset with
only synthetic data had a low mAP of 0.518, adjusting the ratio with real data improved
the performance. The dataset combining real and synthetic data at a 2:8 ratio achieved
a mAP of 0.892, marking an approximate 0.38 increase from the synthetic-only dataset.
With a composition ratio of 2:8 between real and synthetic data, the dataset significantly
improved object recognition accuracy on construction sites. Despite its slightly lower
accuracy compared to the dataset with only real data, the 2:8 ratio dataset showed enhanced
feasibility for data collection, utilizing the efficiency of image synthesis to rapidly gather
extensive data. Synthetic data can be combined with real data to construct a training
dataset, thereby reducing the labor involved in collecting actual data. However, differences
exist between real data and synthetic data, with the probability being higher that data
recognized in practice will resemble real data more closely than synthetic data. It is not
merely the quantity of real data that increase accuracy. Rather, adjusting the synthetic ratio
to enhance performance with an optimally balanced dataset is crucial. Thus, the ratio of
synthetic to real data is significant.

1 =

0.9 —

0.8

0.7

0.6

0.5 —-—mAP —P

0.4
R:S R:S R:S R:S
0:10 2:8 5:5 10:0

Figure 9. Performance based on the ratio variation between real data and synthetic data.

Figure 10 presents the results of frame scaffolding object recognition; the red box
indicates detected scaffolding at a construction site. It demonstrates successful recognition
of both the frame scaffolding in the augmented image and the non-augmented original im-
age. The process of building a frame scaffolding synthetic dataset comprising 2000 images
through synthesis and augmentation took approximately 40 min. However, it is worth
noting that the proficiency of the tool may influence the presence of errors. Real data col-
lected from construction sites often face challenges in securing diverse training data due to
limitations in time and space. In contrast, synthetic data offer the advantage of generating
various datasets by manipulating factors such as object position and size, even with a
limited number of construction objects and backgrounds. Synthetic data can achieve a
satisfactory performance with fewer real data compared to traditional methods, potentially
easing the challenges of data collection at construction sites. Increasing the composition
ratio of synthetic data while decreasing the proportion of real data seems to mitigate the
challenges associated with actual data collection in construction sites, thereby offering a
promising approach to address the difficulties in obtaining real data in such environments.
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Figure 10. Frame scaffolding recognition results.

5. Conclusions

This study involved an experimental investigation into the potential of synthetic data
generation for scaffolding, one of the contributing factors to fall accidents on construction
sites, by using linear objects as the subject. The aim was to find the optimal ratio of mixing
synthetic and real data to achieve a high object recognition performance and to verify the
effectiveness of the hybrid dataset through experimentation. Our aim was to overcome the
challenges of collecting training data at construction sites by creating a training dataset
with an optimal composition ratio using synthetic data. We generated meaningful data at
a low cost by synthesizing 2D backgrounds and objects. Training with a hybrid dataset,
comprising real and synthetic data at a 2:8 ratio, yielded a performance similar to that of
real data, validating the efficacy of the synthesized data. By reducing the proportion of
data requiring direct collection at the construction site by 80% through the construction of
a hybrid dataset, we mitigated the risk associated with data collection. The limitations of
this study include the difficulty in making accurate comparisons among research papers
due to the varied topics of each study, such as synthesized backgrounds, objects, and data
quantities. Additionally, a limitation of this study is the small size of the dataset and the
fact that the proportions of synthetic to real data in the hybrid dataset do not cover all
cases. Future research aims to increase the size of the dataset and diversify the mix ratio
of real and synthetic data to more precisely determine the impact of these ratios on object
recognition performance. Despite these challenges, this study confirms the impact of hybrid
datasets on performance improvement by creating synthetic data, including linear objects
like scaffolds commonly found at construction sites. As there are limitations to collecting all
necessary data directly from construction sites, the significance lies in generating low-cost,
high-efficiency data by reducing the need for actual data collection through synthetic data
creation. Through this research, it is evident that synthetic data generation, combined with
real data at appropriate ratios, can reduce the labor involved in direct data collection on-site,
particularly for data that are challenging to obtain due to linear characteristics. Future
studies are needed to improve the accuracy of object recognition using synthetic datasets.
For the future research, we plan to enhance the detection performance and increase data
diversity by incorporating various types of object data collected at construction sites, as
well as background data differentiated by environmental factors. We anticipate that the
inclusion of more diverse background data, tailored to specific environmental requirements
and object types, will make the data more suitable for construction sites. If synthetic
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data closely resemble real data, they are expected to enhance accuracy, necessitating the
application of additional imaging technology to make synthetic data closer to reality. Image-
processing techniques can adjust shadows, contrast, and color changes to make synthetic
data more similar to real data. Furthermore, since real objects are 3D, recognizing images
can vary depending on the object’s position and angle. To address this, synthetic object data
collected from various angles rather than a single angle are expected to yield higher object
recognition rates. Moreover, combining Al with ontology to assess the safety or unsafety of
recognized objects can significantly enhance AI’s applicability [20]. Simultaneous research
on situation judgment, incorporating synthetic data generation and ontology, could lead to
a more accurate situation judgment. Beyond object recognition, if we can judge the safety
or danger of a situation that occurs during work on an object, we can expect to reduce the
occurrence rate of accidents at construction sites.
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