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Abstract: Facial acne is a prevalent dermatological condition regularly observed in the general
population. However, it is important to detect acne early as the condition can worsen if not treated.
For this purpose, deep-learning-based methods have been proposed to automate detection, but
acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model
for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy–
paste, which synthesizes images by interchanging foreground and background parts between labeled
and unlabeled images during the training phase. To overcome the lower performance observed in
the labeled image training part compared to the previous methods, a new framework was devised to
directly compute the training loss based on labeled images. The effectiveness of the proposed method
was evaluated against previous semi-supervised learning methods using images cropped from facial
images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing
only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods.
The proposed semi-supervised learning approach for facial acne segmentation demonstrated an
improvement in performance, offering a novel direction for future acne analysis.

Keywords: acne segmentation; semi-supervised learning; bidirectional copy–paste; deep learning;
semantic segmentation

1. Introduction

Facial skin disorders commonly occur among people, which is why various studies
are being conducted to detect them [1–4]. Out of these, acne is a prevalent skin disorder
that frequently occurs in the general population. Untreated acne has the potential to
deteriorate or result in scarring. Therefore, multiple research investigations are currently
being conducted to detect and classify acne based on facial images.

Figure 1 displays images of acne cropped from facial images, highlighting the variety
in the color and shape of acne. Initially, acne detection primarily involved extracting
features based on color or texture and utilizing classifiers. Budihi et al. [5] applied the
region growing method based on pixel color similarity in facial skin images to select can-
didate areas for acne. Additionally, a self-organizing map was used to diagnose acne.
Alamdari et al. [6] used techniques such as K-means clustering, texture analysis, and color-
based segmentation to segment acne areas. Yadav et al. [7] identified candidate regions
of acne presence on the face based on the hue–saturation–value (HSV) color space and
then distinguished acne using classifiers trained with a support vector machine (SVM).
However, these methods struggle with setting threshold values for classifying acne’s color
or texture. Moreover, defining a descriptor that reflects the diverse characteristics of acne
accurately is challenging for humans. Recently, methods based on deep learning have been
proposed to detect acne, overcoming the aforementioned issues. Rashataprucksa et al. [8] and
Hyunh et al. [9] utilized object detection models such as the faster region-based convolu-
tional neural network (Faster-RCNN) [10] and region-based fully convolutional networks
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(R-FCN) [11] for acne detection. Min et al. [12] employed a dual encoder based on a con-
volutional neural network (CNN) and Transformer to detect face acne. Junayed et al. [13]
also proposed a dual encoder based on CNN and Transformer, but they detected acne
through a semantic segmentation approach. Kim et al. [14] enhanced the performance of
acne segmentation by training on the positional information of acne in the final encoder.

Deep learning techniques fundamentally require labeled training data. However,
labeling is time consuming and costly, and even securing original medical data, such as for
acne, can be challenging. Recently, to partially address the difficulty of acquiring labeled
data, much research has been conducted on semi-supervised learning, which utilizes both
labeled and unlabeled data for training. Initially, various data augmentation techniques
were applied to unlabeled data, employing consistency regularization [15]. Methods like
Cutmix [16], which overlap parts of different images, have significantly aided in improving
semi-supervised learning. Recently, a method that uses bidirectional copy–paste (BCP)
alternately on the foreground and background between labeled and unlabeled data has
been proposed for medical image segmentation [17]. This proposed method performs
semi-supervised learning while maintaining a bidirectional relationship between the two
sets of data. Additionally, to overcome the lack of training data, it was proposed to use
generative models like StyleGAN2 [18,19] to create images for use in acne training [20,21].

Figure 1. Various acne samples. The shape and skin color of acne are considerably diverse.

We conducted semi-supervised learning of the acne segmentation model using BCP.
We aimed to create an acne segmentation model based on semi-supervised learning using
the BCP method. However, in BCP, training was conducted only with synthetic images
created through copy–paste between labeled and unlabeled images. This approach made
it challenging to fully reflect the characteristics of the labeled images. Although BCP
performed well with computed tomography (CT) images, we discovered shortcomings in
segmenting acne across various shapes and skin tones. To address this issue, we proposed
adding a structure to the BCP framework that is directly trained on input labeled images.
Thus, our proposed method aims to maintain the BCP structure while enabling semi-
supervised learning and improving acne segmentation performance by learning from input
labeled images. Additionally, in the ablation study and discussion, we conducted acne
segmentation experiments using ACNE04 [22], which has similar skin tones, and analyzed
issues related to this.

To verify the performance of our proposed method, we compared the acne segmen-
tation performance with that of previous semi-supervised learning methods. For this
purpose, we used images cropped primarily around acne from facial images, as illustrated



Diagnostics 2024, 14, 1040 3 of 13

in Figure 1. In this paper’s experiment, we compared the performance of acne segmenta-
tion with conventional semi-supervised learning methods by varying the proportion of
labeled images during the training phase. The results showed that the proposed method
achieved the highest Dice score and Jaccard index compared to previous semi-supervised
methods. Notably, the superior performance over BCP demonstrates that training with
both labeled images and synthetic images, rather than just synthetic images, is effective
for acne segmentation applications. The main contributions of the proposed method are
as follows:

• Fusion of labeled loss and synthetic loss: We propose a method that simultaneously
calculates and fuses the labeled loss for training labeled images and the synthetic loss
for training unlabeled images;

• Comparison of acne segmentation performance with semi-supervised learning meth-
ods: We compared the acne segmentation performance with previous semi-supervised
learning methods based on our acne database and ACNE04. Additionally, through
ablation studies, we compared the acne segmentation performance as the parameters
of U-Net were increased.

The structure of this paper is as follows: Section 2 provides a brief introduction to
acne segmentation research and semi-supervised learning. Section 3 describes the semi-
supervised learning method proposed in this paper, and Section 4 presents the experimental
results of the proposed method. Section 5 shows an ablation study, required when adding
the training loss from input labeled images to the total loss, and Section 6 discusses the
proposed method. Finally, Section 7 summarizes the conclusions of this paper.

2. Related Works

In this section, we briefly review previous acne detection methods based on deep learning
and semi-supervised learning approaches to overcome the challenge of insufficient labeling.

2.1. Acne Detection

Rashataprucksa et al. [8] employed object detection models Faster-RCNN [10] and
R-FCN [11] to detect acne in facial images, comparing these two models to evaluate their
respective acne detection capabilities. Min et al. [12] utilized a dual encoder composed of
a CNN and Transformer to extract features which were then processed through dynamic
context enhancement and mask-aware multi-attention for final acne detection. Similarly,
Junayed et al. [13] approached acne detection through semantic segmentation, employing
a dual encoder setup with a CNN and Transformer. This method involved extracting both
local and global information which was then integrated through a feature versatile block to
the decoder. Kim et al. [14] segmented acne using a U-Net [23,24] structure and applied
center point loss to train the last encoder on acne location information. Acne detection
has primarily been conducted through either object detection or semantic segmentation.
However, since the shape of acne can help differentiate the severity of the condition and
assist in treatment [25], our paper aims to detect acne based on semantic segmentation.

2.2. Semi-Supervised Learning

Semi-supervised learning primarily applies various data augmentations to unlabeled
images, focusing on consistency-based learning. FixMatch [26] extracts prediction probabil-
ities by applying different levels of data augmentation to unlabeled data. Then, it ensures
that the predictions from strongly augmented data maintain consistency based on the pre-
diction probabilities of weakly augmented data. However, in FixMatch, only unlabeled data
with predicted probabilities above a certain threshold were used for training, leading to the
exclusion of many unlabeled data instances. To overcome this limitation, Full-Match [27]
introduced adaptive negative learning to improve training performance. Furthermore,
Wu et al. [28] applied pixel smoothness and inter-class separation in semi-supervised learn-
ing to address the blurring of pixels in edge or low-contrast areas. UniMatch [29] improved
semi-supervised performance by applying stronger data augmentation in a dual structure.
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Notably, for strong data augmentation, Cutmix [16] was applied, which involves insert-
ing specific parts of an image into another image. Recently, a method similar to Cutmix,
BCP [17], was proposed for medical image segmentation. This method pairs labeled and
unlabeled data, overlapping specific parts of their images in a manner similar to Cutmix.
Semi-supervised learning is then performed using a teacher and student network structure.
Loss is calculated by comparing the labeled data region with the actual ground truth, while
the loss for the unlabeled data region is determined using the pseudo ground truth from
the teacher network. Given BCP’s proven effectiveness in medical image segmentation,
this paper aims to leverage BCP to improve facial acne segmentation performance.

3. Method

In this section, we provide a detailed explanation of the proposed method. First, we
present the overall structure and explain the basic principles of BCP. Then, we show how
the training loss is calculated in the proposed method.

3.1. Overall Structure

Figure 2 illustrates the overall structure proposed in this paper. It is fundamentally
composed of a teacher network T and a student network S, similar to the BCP method [17].
Both T and S are constructed with U-Net [23], where the channel count of the first encoder
is 16, which is the same model as BCP. Initially, T and S utilize the same pre-trained weights,
Θp, which are trained through supervised learning using only labeled images. However,
unlike previous approaches that trained Θp with synthetic images created by applying
BCP among labeled images, this study employs labeled images. This is because using
labeled images to generate Θp resulted in better performance than using BCP for acne
segmentation. Algorithm 1 shows the overall pseudo code.

Figure 2. Overall structure of the proposed method. Synthetic images are generated using the
bidirectional copy–paste method. The labeled image and synthetic image are each inferred for
prediction values through the student network. Then, synthetic GT is generated using ground truth
(GT) and pseudo GT. The training loss is calculated by sending a supervisory signal to the student
network through each GT. Once the student network is trained, an EMA update is applied to the
teacher network.
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Algorithm 1 Training process of the proposed acne segmentation model.

Input: labeled images Xl , labels Yl , unlabeled images Yu

Output: trained the student weights Θs

Step 1: Preparing
1.1 Setting α as a weight of unlabeled images
1.2 Setting γ as a weight of labeled loss
1.3 Setting λ as a weight of EMA update for Θt
1.4 Setting η as a learning rate
1.5 Initializing Θp

Step 2: Training the pre-trained weights Θp
2.1 Training and selecting the best Θp

a. Computing labeled losses
Ll

i = Lseg( f (Xl
i ; Θp), Yj

i), Ll
j = Lseg( f (Xl

j; Θp), Yl
j)

b. Updating Θp

Θp = Θp − η∇Θp

(
Ll

i + Ll
j

)
Step 3: Training the student weights Θs

3.1 Initializing Θt = Θp, Θs = Θp
3.2 Training and selecting the best Θs

a. Generating synthetic images Xin and Xout by cropping and pasting Xl and Xu

b. Generating pseudo GT Ỹu by f (Xu; Θt)

c. Generating synthetic GT Yin and Yout by cropping and pasting Yl and Ỹu

d. Computing synthetic losses with a mask M
Lin = Lseg( f (Xin; Θs), Yin)⊙ M + α ×Lseg( f (Xin; Θs), Yin)⊙ (1 − M)

Lout = Lseg( f (Xout; Θs), Yout)⊙ (1 − M) + α ×Lseg( f (Xout; Θs), Yout)⊙ M
e. Computing labeled losses

Ll
i = Lseg( f (Xl

i ; Θp), Yj
i), Ll

j = Lseg( f (Xl
j; Θp), Yl

j)

f. Updating Θs

Θs = Θs − η
(
∇Θs

(
Lin + Lout + γ

(
Ll

i + Ll
j

)))
g. EMA Updating Θt

Θt = λ × Θt + (1 − λ)Θs

3.2. Pre-Trained Weight

In Step 3 of Algorithm 1, the weights Θt of the teacher network T need to be initialized
with the pre-trained weights Θp. The pre-trained weights are trained solely on labeled
images in Step 2, which is the same as in typical supervised learning. By setting Θp as the
initial values for Θt and Θs, semi-supervised learning based on BCP becomes possible.

3.3. Bidirectional Copy–Paste for Synthetic Images

The method of generating synthetic images using BCP is as follows. First, a mask M of
the same size as the images is created. M consists of zeros and ones, where the area of ones
becomes the region to be copied. Then, M is applied to Equations (1) and (2) to generate
Xin and Xout.

Xin = Xl
j ⊙ M + Xu

p ⊙ (1 − M), (1)

Xout = Xu
q ⊙ M + Xl

i ⊙ (1 − M), (2)

where Xl
i and Xl

j are the i-th and j-th labeled images, respectively (i ̸= j), and ⊙ represents
element-wise multiplication. Xu

p and Xu
q are the p-th and q-th unlabeled images, respectively

(p ̸= q). 1 represents a matrix of the same size as M, with all elements being 1. Figure 3
provides a detailed example of a sample image generated through BCP.



Diagnostics 2024, 14, 1040 6 of 13

Figure 3. An example of creating Xin by applying BCP to an unlabeled image Xu
q and a labeled

image Xl
j. In mask M, 1 represents the white area, and 0 represents the black area. 1 represents a

matrix of the same size as M, with all elements being 1. ⊙ is element-wise multiplication, and ⊕ is
element-wise addition.

3.4. Pseudo Synthetic Ground Truth for Supervisory Signals

The pseudo GT for unlabeled images is generated through the teacher network T.
First, the prediction values for the unlabeled images Xu

p and Xu
q are extracted using the

equation below.
Pu

p = f (Xu
p; Θt), Pu

q = f (Xu
q ; Θt), (3)

where f is a network model.
Then, as in Equation (3), a binarized pseudo GT is generated using the equation below.

Ỹu
p(i, j) =

{
1 if Pu

p(i, j) > 0.5
0 otherwise

, Ỹu
q (i, j) =

{
1 if Pu

q (i, j) > 0.5
0 otherwise

, (4)

where i and j are coordinates.
Next, the formula below is applied to the ground truths Yl

i and Yl
j of Xl

i and Xl
j,

respectively, to generate Yin and Yout, which are synthetic ground truths.

Yin = Yl
j ⊙ M + Ỹu

p ⊙ (1 − M), (5)

Yout = Ỹu
q ⊙ M + Yl

i ⊙ (1 − M). (6)

3.5. Semi-Supervised Loss Computation

To calculate the training loss for the student network S, the labeled images (Xl
i , Xl

j) and

synthetic images (Xin, Xout) are each inferred through the student network S as Ql
i , Ql

j, Qin,
and Qout, respectively.

Qin = f (Xin; Θs), Qout = f (Xout; Θs), Ql
i = f (Xl

i ; Θs), Ql
j = f (Xl

j; Θs). (7)

Then, the training loss for each corresponding GT is calculated using Equations (8)
through (10). Lseg is the linear combination of Dice loss and cross-entropy.
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Lin = Lseg(Qin, Yin)⊙ M + α ×Lseg(Qin, Yin)⊙ (1 − M), (8)

Lout = Lseg(Qout, Yout)⊙ (1 − M) + α ×Lseg(Qout, Yout)⊙ M, (9)

Ll
i = Lseg(Ql

i , Yj
i), Ll

j = Lseg(Ql
j, Yl

j), (10)

where α represents the weight of the unlabeled images. The final training loss is calculated
using Equation (11).

L = Lin + Lout + γ(Ll
i + Ll

j), (11)

where γ is a parameter that adjusts the weight of the purely supervised loss. Using the
above loss, the student network S is ultimately updated. Subsequently, an Exponential
Moving Average (EMA) update is performed on the teacher network T using Equation (12).

Θt = λ × Θt + (1 − λ)Θs, (12)

where Θt and Θs represent the parameters of the teacher network T and the student
network S, respectively.

4. Experimental Results

In this section, we analyze the performance of the proposed method for acne segmen-
tation and compare it with previous semi-supervised learning methods. First, we describe
the experimental setup and then proceed to compare the acne segmentation performance
with previous semi-supervised methods.

4.1. Experimental Setup

To validate the performance of our proposed acne segmentation method, we acquired
images of acne from facial images taken with skin diagnostic equipment [30]. Each acne
image is cropped around the acne, as shown in Figure 1, and scaled to 256 × 256. We
collected a total of 2000 acne images, of which 1600 were designated as the training set
and the remaining 400 as the evaluation set. The optimizer used for network training
was a stochastic gradient descent (SGD) with a learning rate of 0.01, momentum of 0.9,
and weight decay set to 0.0001. The batch size was set to 24, comprising 12 labeled and
12 unlabeled data. Based on BCP [17], alpha was set to 0.5, and lambda was set to 0.99.
The size of the area for mask 1 was set to 2/3 of the input image. Gamma was set to
0.5 according to our ablation study. Pre-training iterations were set to 10k, and semi-
supervised learning iterations were set to 30k. The training evaluation was compared using
Dice score and Jaccard index. All experiments were conducted on an RTX 4090, Ubuntu
20.04, Pytorch 2.1.1.

4.2. Comparison of Results
4.2.1. Comparison between Synthetic Images and Labeled Images for Pre-Trained Weight

Pre-trained weights are trained through supervised learning. In the original approach,
BCP was applied to labeled images to create synthetic images for training pre-trained
weights. Our method, however, utilizes labeled images directly without applying BCP
for training pre-trained weights. Thus, a comparison between these two approaches was
initially conducted.

Table 1 presents the results of training with different proportions of labeled data at
3% and 7%. As shown in Table 1, generating pre-trained weights with labeled images
demonstrated superiority in three metrics over using synthetic images. Therefore, we opted
to train with labeled images, which, overall, provided better performance for generating
pre-trained weights Θp.
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Table 1. Comparison between synthetic images and labeled images for generating pre-trained
weights Θp.

Loss Type Ratio Metrics
Labeled Unlabeled Dice Score Jaccard Index

Synthetic loss 3% 0% 0.4423 0.3108
Labeled loss 3% 0% 0.4570 0.3203

Synthetic loss 7% 0% 0.4784 0.3425
Labeled loss 7% 0% 0.4951 0.3517

4.2.2. Semi-Supervised Learning Comparison

We compared the semi-supervised learning performance of our proposed method
with previous methods. Table 2 lists the performance of our proposed method against
comparison methods across various metrics. Our method was trained in a semi-supervised
manner, as proposed in Section 3, based on the pre-trained weights learned in Section 4.2.1.
As shown in Table 2, our proposed method exhibited the highest performance. This suggests
that training with both BCP-based synthetic images and labeled images simultaneously
provided mutual benefits, leading to the superior performance of our proposed method.
Figure 4 presents examples of results from each method when using 7% labeled images.

Table 2. Comparison of acne segmentation performance of the proposed method and previous
semi-supervised learning methods.

Method Ratio Metrics
Labeled Unlabeled Dice Score Jaccard Index

SS-Net [28] 3% 97% 0.4732 0.3333
BCP [17] 3% 97% 0.5054 0.3617

Ours 3% 97% 0.5251 0.3777

SS-Net [28] 7% 93% 0.5162 0.3750
BCP [17] 7% 93% 0.5357 0.3912

Ours 7% 93% 0.5603 0.4117

(a) (b) (c) (d) (e)

Figure 4. Examples of acne segmentation results from the compared semi-supervised methods.
(a) represents the input images, (b) is the ground truth. (c) is the result of SS-Net, (d) is the result of
BCP, and (e) is the result of the proposed method.
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Additionally, to further compare our method with BCP, we examined the training
and validation loss and the Dice score. We set the proportion of labeled images at 7% and
calculated the loss using each method for comparison, as shown in Figure 5. In our method,
because labeled loss is added, the initial loss is higher than BCP. However, as training
progresses, it becomes lower than BCP. Especially during training, the validation loss is
mostly lower than BCP. Therefore, by comparing the Dice score, we can confirm that the
proposed method’s acne segmentation performance is clearly higher than that of BCP.

(a) (b)

Figure 5. Comparison of training and validation loss and Dice score for our method and the BCP
method. (a) shows the training and validation losses for each method, and (b) shows the Dice scores.

5. Ablation Study

In this section, we analyze the acne segmentation performance based on the gamma
value used to fuse synthetic loss and labeled loss, and the number of parameters in U-
Net, within the proposed method. Additionally, we compared the acne segmentation
performance of the proposed method with BCP using the public database ACNE04.

5.1. Performance Variation according to γ and the Number of Channels in U-Net

In this section, we present the results of acne segmentation according to different γ
values used in Equation (11) for combining synthetic image loss (Lin + Lout) and labeled
image loss (Ll

i + Ll
j). We tested three scenarios with γ values of 0.1, 0.5, and 1.0. Generally,

using γ = 0.5 resulted in superior overall performance, shown in Table 3. While there
were differences in some scores, high performance was demonstrated in the Dice score and
Jaccard indexes, which consider overall performance. Therefore, in our experiments, we
used γ = 0.5.

Table 3. Comparison of acne segmentation performance based on γ.

γ
Ratio Metrics

Labeled Unlabeled Dice Score Jaccard Index

0.1 3% 97% 0.5177 0.3693
0.5 3% 97% 0.5251 0.3777
1.0 3% 97% 0.5205 0.3753

0.1 7% 93% 0.5522 0.4060
0.5 7% 93% 0.5603 0.4122
1.0 7% 93% 0.5588 0.4117
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Next, we experimented with increasing the number of channels in the first encoder of
the UNet-BN used in our experiments. While BCP set the number of channels at 16, we
conducted comparative experiments with increased numbers at 32 and 64. Table 4 shows
the acne segmentation performance when the number of channels was increased. As the
number of channels increased, performance metrics also improved. Therefore, based on
using 7% labeled images for acne segmentation, compared to using BCP, the Dice score
increased by 0.0424 and the Jaccard index by 0.0359.

Table 4. Comparison of acne segmentation performance based on changes in the number of channels
in the first encoder.

# Channels Ratio Metrics
Labeled Unlabeled Dice Score Jaccard Index

16 (BCP [17]) 3% 97% 0.5054 0.3617
16 (ours) 3% 97% 0.5251 0.3777
32 (ours) 3% 97% 0.5394 0.3912
64 (ours) 3% 97% 0.5458 0.3965

16 (BCP [17]) 7% 93% 0.5357 0.3912
16 (ours) 7% 93% 0.5603 0.4117
32 (ours) 7% 93% 0.5709 0.4233
64 (ours) 7% 93% 0.5781 0.4271

5.2. Acne Segmentation Performance on ACNE04

In this subsection, we aim to compare acne segmentation performance using the
public acne database ACNE04 [22]. However, ACNE04 does not have annotations for
semantic segmentation. Instead, it provides bounding boxes for object detection. Using this
bounding box information, we generated pseudo ground truth for semantic segmentation,
as shown in Figure 6, by drawing circles passing through the center of each side of the
bounding boxes. Because of the diversity of acne shapes, they do not accurately reflect the
actual boundaries of acne lesions. As a result, this experiment focused on understanding
the trend in performance differences with BCP rather than precise accuracy.

Originally, the ACNE04 database contained a total of 1457 images. However, some
images have poor quality or contain watermarks. We excluded these and selected 1108 im-
ages that had good quality and similar shooting conditions. We selected 222 images for
validation and the remaining ones for training. We cropped the selected images as de-
scribed in Section 4, yielding 1600 training patches and 400 validation patches. Table 5
displays the results of semi-supervised learning using the proposed method and BCP.
While the proposed method outperforms BCP, it yields a somewhat reduced improvement
margin when compared to our acne database. This limitation is attributed to the crude
pseudo ground truth and the characteristics of the images in ACNE04, which will be further
analyzed in the Discussion section. Nevertheless, using both synthetic loss and labeled loss
simultaneously helped to improve acne segmentation performance.

Table 5. Comparison of acne segmentation results using semi-supervised learning with ACNE04’s
pseudo ground truth.

Methods Ratio Metrics
Labeled Unlabeled Dice Score Jaccard Index

BCP [17] 3% 97% 0.5103 0.3642
Ours 3% 97% 0.5159 0.3702

BCP [17] 7% 93% 0.5664 0.4141
Ours 7% 93% 0.5749 0.4212
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(a) (b) (c)

Figure 6. Example of creating semantic segmentation ground truth using ACNE04’s bounding boxes.
(a) is the original image, and (b) shows the blue boxes indicating acne with bounding boxes. By
drawing ellipses inside the bounding boxes, pseudo ground truth for acne is generated as shown
in (c).

6. Discussion

The proposed method showed improved performance for our data compared to the
original BCP method. However, as observed in the ablation study in Section 5, there was a
decrease in acne segmentation performance improvement in ACNE04. To analyze this, we
compared synthetic images composed from each dataset, as depicted in Figure 7. Our data
include a variety of skin colors and diverse lighting conditions, while the ACNE04 dataset
used in the experiments is predominantly composed of East Asian skin tones. Therefore,
even when creating synthetic images using ACNE04, as shown in Figure 7, the images
composited in the foreground exhibit less disparity and lower color gradation compared
to those composed with our data. Nevertheless, actual human skin tones vary widely in
color depending on race and environmental conditions. Therefore, it is expected that our
method will demonstrate superior performance in actual acne segmentation compared to
the original BCP approach.

Figure 7. Comparison of synthetic images. The two images on the left are synthetic images generated
from our database, and those on the right are from ACNE04. Our database reflects a variety of skin
tones and lighting, resulting in a significant color difference between the duplicated inner images and
the background images. In contrast, the ACNE04 images are synthesized in relatively similar colors.
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7. Conclusions

In this paper, a semi-supervised learning method for training acne segmentation
models is proposed. The original BCP method, which calculates the loss solely on syn-
thetic images, was insufficient for detecting acne across diverse skin tones. To address
this, the training process was enhanced by including original images to improve overall
acne segmentation performance. The proposed method was compared with previous
semi-supervised learning methods on acne patch images and demonstrated superior per-
formance based on evaluation metrics such as the Dice score and Jaccard index. However,
the performance improvement was less significant for ACNE04, where the skin color and
lighting are similar. Since actual human skin color and lighting vary, performance improve-
ments like those in the main results of this paper are expected in real applications. Future
research aims to apply the proposed method across the medical imaging field to enhance
performance in various areas.
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