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Abstract: In the Standard Model, ad hoc hypotheses assume the existence of three generations of point-
like leptons and quarks, which possess a point-like structure and follow the Dirac equation involving
four anti-commutative matrices. In this work, we consider the sedenion hypercomplex algebra as an
extension of the Standard Model and show its close link to SU(5), which is the underlying symmetry
group for the grand unification theory (GUT). We first consider the direct-product quaternion model
and the eight-element octonion algebra model. We show that neither the associative quaternion
model nor the non-associative octonion model could generate three fermion generations. Instead,
we show that the sedenion model, which contains three octonion sub-algebras, leads naturally to
precisely three fermion generations. Moreover, we demonstrate the use of basis sedenion operators to
construct twenty-four 5 × 5 generalized lambda matrices representing SU(5) generators, in analogy
to the use of octonion basis operators to generate Gell-Mann’s eight 3 × 3 lambda-matrix generators
for SU(3). Thus, we provide a link between the sedenion algebra and Georgi and Glashow’s SU(5)
GUT model that unifies the electroweak and strong interactions for the Standard Model’s elementary
particles, which obey SU(3)⊗SU(2)⊗U(1) symmetry.
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1. Introduction

The Dirac equation is the Standard Model’s cornerstone for describing all fermionic
elementary particles [1–3]. According to the ad hoc assumptions, the three generations of
leptons and quarks are point-like objects without a physical size [4–6]. However, such a
long-held conceptual picture of a point-like particle is inconsistent with observations. For
example, it is unclear why there are precisely three generations of leptons and quarks [7]
and why a point-like muon or tau can be much heavier than an electron [8,9]; and, for the six
types of point-like quarks, why the charm, strange, top and bottom quarks are heavier than
the up and down quarks [10,11]. In Dirac’s theory of a relativistic electron, he coupled four
4 × 4 anti-commutative matrices {α1, α2, α3, β}, equivalently, to the first-order deriva-
tives in space and time to describe the wave [12,13]. Extending the operator techniques
beyond Dirac’s theory, one can include additional operators in higher dimensions to de-
scribe a particle’s internal degrees of freedom. In this work, we analyze two types of
higher-dimensional generalizations, using the direct-product operators constructed from
Pauli’s matrices versus hyper-complex operators beyond quaternions [14,15], which is
equivalent to Dirac’s 4 × 4 gamma matrices. Like the four-element quaternion algebra with
three anti-commutative basis operators [16], the eight-element octonion algebra contains
seven operators. Still, unlike the associative quaternion algebra, the octonion algebra is
non-associative [17–20]. In this work, we examine the corresponding multiplication rules
and compare their multiplication tables to clarify the similarities, differences and physical
implications.
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In Section 2.1, we briefly review Dirac’s original model and its connection to the quater-
nion algebra. In Section 2.2, we consider a higher-dimensional model beyond Dirac’s four
anti-commutative gamma matrices. We analyze the group of 16 direct-product operators
constructed from quaternions or, equivalently, Pauli’s matrices and an identity operator,
which are related to the 16 Dirac gamma. In Section 2.3, we discuss the non-associative
16-element sedenion algebra [21–26], and show it comprises three distinctive octonion
algebras. We analyze its differences from the direct-product case and examine whether
the corresponding mass–energy relation is consistent with Einstein’s special relativity. In
Section 2.5, we show how proper operator assignment of the operators from three octonion
sub-algebras can naturally lead to the rise of three generations of leptons and quarks.
Finally, in Section 2.6, we present a mapping of octonions to 8 SU(3) generators, and a
mapping of sedenion operators to 24 generators for SU(5), which was proposed by Geogi
and Glashow [27,28] for their GUT model for the grand unification of the Standard Model’s
elementary particles.

2. Theory

In this section, we present a theoretical analysis of an associative algebra model
using Dirac’s gamma matrices, which are related to direct-product operators constructed
from quaternions or, equivalently, Pauli’s matrices and an identity matrix, versus the non-
associative algebra model based on octonion and sedenion operators. This work extends
Dirac’s original theory of the electron to three generations of leptons and quarks. It opens
up the Standard Model beyond the ad hoc assumption of point-like elementary fermions.
We show that sedenion algebra provides a pivotal link to the SU(5) symmetry of GUT. This
hyper-complex operator model with higher degrees of freedom leads precisely to three
generations of leptons/quarks with internal structures.

2.1. Dirac Equation

According to Dirac’s theory of the electron, when using the gamma matrices, one has(
iγµ∂µ − m

)
Ψ = 0, µ = 0, 1, 2, 3

pk = −i∂k, p0 = i∂0

γk = iσ2 ⊗ σk =

(
0 σk

−σk 0

)
, γ0 = σ3 ⊗ σ0 =

(
I2 0
0 −I2

) (1A)

where the natural unit ℏ = c = 1 is used. Here, we define five 2 × 2 matrices, including
Pauli’s matrices σ1, σ2 , σ3, and an identity matrix I2, as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ0 = I2 =

(
1 0
0 1

)
, (1B)

Equivalently, using the matrices αk = γ0γk and β = γ0, the Dirac equation can also
be expressed as EΨ = ( α · P +βm)Ψ . The identity matrix and three Pauli matrices form
the basis operators for quaternion algebra. Based on Dirac’s first-order differential equation
in spacetime, one obtains Einstein’s relativistic mass–energy relation E2 = m2 + p2. These
Dirac gamma matrices are used in the Dirac equation. However, the product of these
matrices does not satisfy the closure property; for example, it does not belong to the same
set. Therefore, these five operators do not form a group.

In the Standard Model, the same Dirac equation is used for all leptons and quarks;
assuming these particles are point-like objects with an infinitely small volume, it does not
offer physical explanations for why there are precisely three generations. To generalize
the Dirac equation to higher dimensions, and to account for three fermion generations
by incorporating internal structural dynamics, we consider in the following sections two
modeling approaches, i.e., a direct-product matrix model of 16 associative 4 × 4 matrices
versus the non-associative hype-complex algebra of 16 sedenion basis operators.
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2.2. Associative Algebra of 16 Direct-Product Matrices
{I, Γ1, Γ2, Γ3, Θ1, U1, U2, U3, Θ2, V1, V2, V3, Θ3, W1, W2, W3}

To generalize Dirac’s description of the electron using four Dirac gamma matrices
γµ(µ = 0, 1, 2, 3), we can define a set of direct-product operators using three Pauli matri-
ces and an identity matrix as

σij ≡ σi ⊗ σj
Uk = iσ1k, Vk = iσ2k Wk = iσ3k, Γk = iσ0k Θk = iσk0

(2)

One can show that the eight-element set of direct-product operators forms a group
with the closure property for multiplication. Similarly, one can show that the other two sets
{I, Γ1, Γ2, Γ3, Θ2, V1, V2, V3} and {I, Γ1, Γ2, Γ3, Θ3, W1, W2, W3} form a group for
multiplication. These direct-product operators can be related to the sixteen direct-product
matrices of quaternions. The multiplication table for the sixteen direct-product operators,
which are related to Dirac’s gamma matrices, is illustrated in Figure 1.
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Figure 1. The color-coded multiplication table for 16 direct-product operators. Among
the 16 operators, the 4th, 8th and 12th operators are commutative with other operators, al-
though most are anti-commutative. These properties differ from those of sedenion alge-
bra. This 16-element group contains three 8-element sub-groups with closure properties
for multiplication, namely, {I, Γ1, Γ2, Γ3, Θ1, U1, U2, U3}, {I, Γ1, Γ2, Γ3, Θ2, V1, V2, V3} and
{I, Γ1, Γ2, Γ3, Θ3, W1, W2, W3}. Each domain contains quaternion triplets following cyclic multi-
plication rules.

Here, we summarize their multiplication rules for these sixteen direct-product
operators:

UiUj = −εijkΓk − δijI, ViVj = −εijkΓk − δijI, WiWj = −εijkΓk − δijI
ΓiΓj = −εijkΓk − δij I, Θi Θj = −εijkΘk − δij I
Ui Vj = −iεijkWk − δij Θ3,
Vj Ui = −iεijkWk + δij Θ3
ViWj = − iεijkUk + δijΘ1,
Wj Vi = −iεijkUk + δijΘ1 ,
WiUj = −iεijkVk + δijΘ2

(3A)
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and
UiΓj = −σ1iσ0j = −iεijkσ1k − δijσ10 = − εijkUk + iδijΘ1
ΓjUi = −σ0jσ1i = iεijkσ1k − δijσ10 = εijkUk + iδijΘ1
ViΓj = −εijkVk + iδijΘ2
ΓjVi = εijkVk + iδijΘ2
WiΓj = −εijkWk + iδijΘ3
ΓjWi = εijkWk + iδijΘ3

(3B)

and
ΓiΓj = − εijkΓk − δij I, Θi Θj = −εijkΘk − δij I

Θ1Γk = Γk Θ1 = i Uk, Θ2 Γk = ΓkΘ2 = i Vk, Θ3Γk = ΓkΘ3 = i Wk
UkΘ1 = Θ1Uk = iΓk, VkΘ2 = Θ2Vk = iΓk, WkΘ3 = Θ3Wk = iΓk
Uk Θ2 = −Θ2Uk = −Wk, Uk Θ3 = −Θ3Uk = Vk
Vk Θ1 = −Θ1Vk = Wk, Vk Θ3 = −Θ3Vk = −Uk
Wk Θ1 = −Θ1Wk − Vk, Wk Θ2 = −Θ2Wk = Uk .

(3C)

This 16-element group contains three 8-element subgroups, namely, {I, Γ1, Γ2, Γ3, Θ1,
U1, U2, U3}, {I, Γ1, Γ2, Γ3, Θ2, V1, V2, V3} and {I, Γ1, Γ2, Γ3, Θ3, W1, W2, W3}.

These three subgroups with eight elements of 4 × 4 matrices satisfy the closure and
associative properties. They differ from the non-associative octonion algebra, which will be
discussed in detail later in Section 2.3.

Here, we examine the mass–energy relation based on the operators according to
the first sub-group {I, Γ1, Γ2, Γ3, Θ1, U1, U2, U3}. We propose to extend Dirac’s equa-
tion involving four gamma matrices to higher dimensions involving eight direct-product
operators as

m0 = iEΘ1 +
3

∑
k=1

PkΓk +
3

∑
k=1

QkUk (4A)

By taking the square of both sides of the equation, one obtains

m0
2 = E2 +

3
∑

k=1
Pk

2Γk
2 +

3
∑

k=1
Qk

2Uk
2 +

3
∑

i, ̸=j=1
PiPj

{
Γi, Γj

}
+

3
∑

i, ̸=j=1
QiQj

{
Ui, Uj

}
+

3
∑

i,j=1
PiQj

{
Ui, Γj

}
+ iE

3
∑

k=1
(Pk{Θ1, Γk}+ Qk{Θ1, Uk})

(4B)

or, equivalently, according to the multiplication rules in Figure 1, one has

E2 = m0
2 +

3
∑

k=1

(
Pk

2 + Qk
2
)
− iΘ1

3
∑

k=1
PkQk − iE

3
∑

k=1
(PkUk + QkΓk) . (4C)

Similarly, for the second assignment, one has

m0 = iEΘ2 +
3
∑

k=1
PkΓk +

3
∑

k=1
QkVk

E2 = m2
0 +

3
∑

k=1

(
Pk

2 + Qk
2
)
− iΘ2

3
∑

k=1
PkQk − iE

3
∑

k=1
(PkVk + QkΓk)

(4D)

and for {I, Γ1, Γ2, Γ3, Θ3, W1, W2, W3}, one obtains

m0 = iEΘ3 +
3
∑

k=1
PkΓk,+

3
∑

k=1
QkWk

E2 = m0
2 +

3
∑

k=1

(
Pk

2 + Qk
2
)

− iΘ3
3
∑

k=1
PkQk − iE

3
∑

k=1
(PkWk + QkΓk).

(4E)

In Equation (4A,D,E), the last two terms of the equations involve operators Wk, which
lead to mass–energy oscillations in time for a lepton and quark. Therefore, such results
are neither consistent with experimental observations nor in agreement with Einstein’s
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mass–energy relation, which contains additional kinetic energy ∑k Qk
2 due to a particle’s

internal structural dynamics. Therefore, although the 16-element group of direct-product
operators has three 8-element subgroups, the above direct-product model cannot represent
three generations of leptons and quarks. In the following sections, we will discuss the
non-associative sedenion and octonion algebras, and show that they do not encounter these
problems faced by the associative direct-product operator model.

2.3. Non-Associative Octonion Algebra and a Single Fermion Generation

We consider the octonion algebra to avoid the problems faced by the direct-product
matrix model. Any element x and its conjugate x in the octonion algebra can be expressed
in terms of the identity operator e0 and seven other octonion unit operators

x = x0e0 + X, x = x0e0 − X, X =
7

∑
k=1

xkek, (5)

where ek satisfies the anti-commutative relation
{

ei, ej
}
= 0, i ̸= j for a different pair of

indices. These non-associative octonion operators follow the specific multiplication rules in
Figure 2.
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domains of cyclic multiplication rules for quaternions. Each color-coded field of quaternion triplets
follows cyclic multiplication rules.

For the octonion algebra of Figure 2, the fourth element anti-commutes with all
other operators except the identity operator. However, in Figure 1, for the direct-product
operators, the fourth element a4, a8 or a12 is commutative with all other operators, except the
identity element. This property is essential for the corresponding mass–energy relation to
be consistent with Einstein’s relativity. Therefore, the model with seven non-associative but
anti-commutative octonion operators is the correct model to describe a single generation of
leptons or quarks. The octonion model invokes three extra degrees of freedom to represent
the internal structural dynamics of a fermion as three momentum components concerning
the center-of-mass reference frame. In contrast, the other three anti-commutative operators
define the external degrees of freedom as three momentum operators for the particle
concerning the laboratory frame.

2.4. Three Octonion Sub-Algebras in Sedenion Algebra and Three Generations of
Charged/Neutral Leptons

In the previous section, we explained that the octonion algebra leads to only one
fermion generation. To accommodate three generations, one needs to consider a higher-
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dimensional hypercomplex algebra, namely, the sedenion algebra. The sedenion algebra
consists of 16 basis sedenion operators {ek, k = 0, 1, 2, . . . , 15} , denoted sequentially.

The multiplication rules for 16 sedenion basis operators are given in Figure 3 and are
different from the table for the direct-product operator model shown earlier in Figure 1.
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As can be seen from Figure 3, the sedenion algebra contains three distinct types of the oc-
tonion algebra, which are denoted by {I, Γ1, Γ2, Γ3, Θ1, U1, U2, U3}, {I, Γ1, Γ2, Γ3, Θ2,
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Each color-coded domain of quaternion triplets follows cyclic multiplication rules.
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We examine here the mass–energy relation according to the octonion algebra of
{I, Γ1, Γ2, Γ3, Θ1, U1, U2, U3} that represents the basis octonion operators {e0, e1, e2, e3,
e5, e6, e7, e8} sequentially. We can generalize Dirac’s equation and utilize

1) m0I = iEΘ1 +
3
∑

k=1
PkΓk +

3
∑

k=1
AkUk

iE I = −m0Θ1 +
3
∑

k=1
PkΘ1Γk,+

3
∑

k=1
AkΘ1Uk = −m0Θ1 −

3
∑

k=1
PkUk +

3
∑

k=1
AkΓk

−E2 =

(
−m0Θ1 +

3
∑

k=1
AkΓk −

3
∑

k=1
PkUk,

)2

= m0
2Θ1

2 +
3
∑

k=1
Ak

2Γk
2 + Pk

2Uk
2

+
3
∑

i, ̸=j
Ai Aj

{
Γi, Γj

}
+

3
∑

3
∑

i, ̸=j
Pi

PiPj
{

Ui, Uj
}

− m0P{Θ1, Γk}+ m0
3
∑

k=1
Pk{Θ1, Uk}

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1
Ak

2.

(6A)

The above result is consistent with Einstein’s mass–energy relation, indicating that the
octonion model gives rise to a single generation of fermions with an internal structural dy-
namic. Similarly, for {I, Γ1, Γ2, Γ3, Θ2, V1, V2, V3} and {I, Γ1, Γ2, Γ3, Θ3, W1, W2, W3},
one can obtain

2) m0I = iEΘ2 +
3
∑

k=1
PkΓk +

3
∑

k=1
BkVk

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1
Bk

2,
(6B)

and

3) m0I = iEΘ1 +
3
∑

k=1
PkΓk +

3
∑

k=1
CkWk

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1
Ck

2.
(6C)

The three above equations reproduce Einstein’s mass–energy relation, e.g.,
E2 = m0,e f f

2 + ∑k Pk
2, m0,e f f

2 ≡ m0
2 + ∑k Qk

2, Qk = Ak, Bk, Ck for a particle with
an effective rest mass m0,e f f , which contains the kinetic energy of its internal structural
dynamics. Equation (6A–C) can represent three generations of charged leptons, namely
the electron, the muon and the tau. For three generations of neutral leptons, i.e., the
corresponding neutrino for each generation of leptons, we use the following assignments:

1) m0 I = iE iΘ1 +
3
∑

k=1
PkΓk +

3
∑

k=1
Ak(Vk + iWk)

iE I = −m0Θ1 +
3
∑

k=1
PkUk +

3
∑

k=1
Ak(Wk − iVk)

−E2 = m0
2Θ1

2 + Pk
2Uk

2 +
3
∑

k=1
Ak

2(Wk − iVk)
2

− m0
3
∑

k=1
Ak{Θ1, Wk − iVk}+

3
∑

i,j=1
Pi
{

Ui, Wj − iVj
}

E2 = m0
2 +

3
∑

k=1
Pk

2

(7A)
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2) m0 I = iE iΘ2 +
3
∑

k=1
PkΓk +

3
∑

k=1
Bk(Wk + iUk)

iE I = −m0Θ2 +
3
∑

k=1
PkVk +

3
∑

k=1
Bk(Uk − iWk)

E2 = m0
2 +

3
∑

k=1
Pk

2

(7B)

3) m0 I = iE Θ3 +
3
∑

k=1
PkΓk +

3
∑

k=1
Ck(Uk + iVk)

iE I = −m0Θ3 +
3
∑

k=1
PkWk +

3
∑

k=1
Ck(Vk − iUk)

E2 = m0
2 +

3
∑

k=1
Pk

2.

(7C)

Owing to the absence of ∑k Qk
2 in the above results for three neutrino generations,

one has a vanishingly small rest mass E2 ≈ ∑k Pk
2 if m0 is close to zero. Unlike the

cases for the charged leptons, one has E2 = m0,e f f
2 + ∑k Pk

2, where m0,e f f
2 = m0

2 +

∑k Qk
2 ≈∑k Qk

2, even if m0 is close to zero. According to the above sedenion model, their
masses could be close to zero and are much smaller than those of their corresponding
leptons. The experimental observations of flavor mixing and the mass oscillations among
three generations of neutrinos are believed to be induced by the symmetry-breaking
mechanism of the sedenion algebra. It will be shown later in Section 2.6 that the sedenion
algebra can be linked to SU(5). The symmetry breaking of SU(5) into SU(3)⊗SU(2)⊗U(1)
might be caused by the flavor mixing and mass oscillations of neutrinos.

2.5. Sedenion Algebra and Three Generations of Quarks

Here, we propose the following assignments of the sedenion operators for three quark
generations:

1) m0 I = iE iΘ1 +
3
∑

k=1
PkΓk +

3
∑

k=1
(BkVk + CkWk)

iE I = −m0Θ1 +
3
∑

k=1
PkUk +

3
∑

k=1
(BkWk − CkVk)

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1

(
Bk

2 + Ck
2
) (8A)

2) m0 I = iE iΘ2 +
3
∑

k=1
PkΓk +

3
∑

k=1
(CkWk + AkUk)

iE I = −m0Θ2 +
3
∑

k=1
PkUk +

3
∑

k=1
(CkUk − AkWk)

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1

(
Ak

2 + Ck
2
) (8B)

3) im0 I = iE iΘ3 +
3
∑

k=1
PkΓk +

3
∑

k=1
(AkUk + BkVk)

iE I = −m0Θ3 +
3
∑

k=1
PkUk +

3
∑

k=1
(−AkVk + BkUk)

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1

(
Ak

2 + Bk
2
)

.

(8C)
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One could also make different assignments to the generalized energy and momentum
operators for the other three heavier quark generations.

1) m0I = iEΘ1 +
3
∑

k=1
PkΓk +

3
∑

k=1
(AkUk + BkVk + BkWk)

iEI = im0Θ1 +
3
∑

k=1
PkUk +

3
∑

k=1
(AkΓk + BkWk − BkVk)

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1

(
Ak

2 + 2Bk
2
)

,

(9A)

2) m0I = iEΘ2 +
3
∑

k=1
PkΓk +

3
∑

k=1
(CkUk + BkVk + AkWk)

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1

(
Bk

2 + 2Ck
2
)

,
(9B)

3) m0I = iEΘ3 +
3
∑

k=1
PkΓk +

3
∑

k=1
(AkUk + AkVk + CkWk)

E2 = m0,e f f
2 +

3
∑

k=1
Pk

2, m0,e f f
2 = m0

2 +
3
∑

k=1

(
Ck

2 + 2Ak
2
)

.
(9C)

According to the above operator assignments, there are six possible types of assign-
ments for the quarks, namely, the assignments in Equation (8A–C) could be related to the
lighter three-member family of the up, charm and top quarks, while the assignments in
Equation (9A–C) could be linked to the heavier three-member family of the bottom, strange
and bottom quarks. Thus, the sedenion algebra is shown to lead naturally to six types of
quarks of the Standard Model.

2.6. Mapping Octonions to SU(3) Generators and Sedenion to SU(5) Generators

In this section, we discuss the mapping of the octonion operators to 8 SU(3)’s genera-
tors and the mapping of sedenion operators to 24 SU(5) generators. Each type of octonion
operator can be shown to be related to Clifford algebra C↕(6) [20]. Here, we define three
pairs of fermion creation and annihilation operators, which satisfy the anti-commutation
relations as

α1 = (−e6 + ie5)/2, α2 = (−e3 + ie1)/2, α3 = (−e7 + ie2)/2{
αi, αj

}
=

{
α+i , α+j

}
= 0 ,

{
αi, α+j

}
= δij

(10A)

For the first lepton/quark generation, these eight basis octonion operators are denoted
by {I, Γ1, Γ2, Γ3, Θ1, U1, U2, U3}

α1 = (−U2 + iU1)/2, α2 = (−Γ3 + iΓ1)/2, α3 = (−U3 + iΓ2)/2
α+1 = (U2 + iU1)/2, α+2 = (Γ3 + iΓ1)/2, α+3 = (U3 + iΓ2)/2.

(10B)

One can define a tensor product |i⟩⟨j| ≡ αi
+αj to construct the following eight SU(3)

generators, which are related to Gell-Mann’s lambda matrices Λk as

Λ1 = |2⟩⟨1|+ |1⟩⟨2| = i (U3 − U2)/2
Λ2 = −i|1⟩⟨2|+ i|2⟩⟨1| = −i (U1 − Θ1)/2
Λ3 = |1⟩⟨1| − |2⟩⟨2| = i(Γ3 − Γ2)/2
Λ4 = |1⟩⟨3|+ |3⟩⟨1| = i(Θ1 − Γ2)/2
Λ5 = −i|1⟩⟨3|+ i|3⟩⟨1| = −i (Γ1 + U3)/2
Λ6 = |2⟩⟨3|+ |3⟩⟨2| = −i (Γ1 + U2)/4
Λ7 = −i|2⟩⟨3|+ i|3⟩⟨2| = −i(Θ1 − Γ3)/2
Λ8 = (|1⟩⟨1|+ |2⟩⟨2| − 2|3⟩⟨3|)/

√
3 = i(Γ3 + Γ2 − 2U2)/2.

(10C)
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We have shown above that the eight lambda matrices, as the SU(3) generators, can be
constructed by {I, Γ1, Γ2, Γ3, Θ1, U1, U2, U3} because the sedenion algebra consists of
three octonion sub-algebras, similar to other octonion basis sets, e.g., {I, Γ1, Γ2, Γ3, Θ2, V1,
V2, V3} to make two other lambda-matrix generators. Together with the U-type, V-type
and W-type octonion algebras, which are the three distinct sub-algebras of the sedenion
algebra, we can build altogether 24 generators for SU(5).

In Equation (10) we use octonion basis operators for the construction of three pairs
of creation and annihilation operators which could be employed to construct eight 3 × 3
lambda matrix generators for the SU(3) symmetry group. Here, by extending the use of
three pairs of creation and annihilation operators for the octonion algebra, we can now
define five pairs of fermion creation and annihilation operators as

α1 = (−e6 + ie5)/2, α2 = (−e3 + ie1)/2, α3 = (−e7 + ie2)/2
α4 = (−e14 + ie13)/2, α5 = (−e11 + ie9)/2{

αi, αj
}
=

{
α+i , α+j

}
= 0,

{
αi, α+j

}
= δij,

(11A)

or, equivalently,

α1 = (−U2 + iU1)/2, α2 = (−Γ3 + iΓ1)/2, α3 = (−U3 + iΓ2)/2
α4 = (−V2 + iV1)/2, α5 = (−W2 + iW1)/2.

(11B)

Similar to the construction of eight 3 × 3 lambda matrices in Equation (10C) for the
SU(3) generators from three pairs of creation and annihilation operators, from five pairs of
fermionic creation and annihilation operators, we could construct a total of twenty-four
generalized lambda matrices as the SU(5) generators. Put simply, there are eight 3 × 3
matrix generators in SU(3). The number eight equates to the square of three minus one
by excluding an identity matrix, whereas in SU(5), there are twenty-four 5 × 5 matrix
generators, which equal the square of five minus one by excluding an identity matrix.
Similar to the automorphic relationship between the octonion algebra and SU(3), in this
work, we establish the relationship between the sedenion algebra and SU(5). We have
shown in Equation (10C) the explicit assignments of the SU(3) generators from pairs of the
octonion basis operators. Similar pair assignments of sedenion operators to the twenty-four
lambda generators for SU(5) are quite lengthy but straightforward, and will not be given
here. Using the five pairs of fermionic creation and annihilation operators, one can construct
ten pairs of 5 × 5 SU(5) generator matrices as |m⟩⟨n| + |n⟩⟨m|, − i|m⟩⟨n|+ i|n⟩⟨m|,
for m ̸= n = 1, 2, . . . , 5. With the same indices, one can make four diagonal but orthogonal
5 × 5 matrices. Therefore, among these twenty-four SU(5) generators represented by
5 × 5 generalized lambda matrices, there are four diagonal matrices and twenty off-
diagonal matrices. The SU(5) symmetry plays an essential role in the GUT (grand unification
theory) [27,28], which has been advocated to unify the electromagnetic, weak and strong
interactions of elementary particles. These three types of the eight-element octonion
algebra are not independent of each other because they contain the same quaternion
algebra {I, Γ1, Γ2, Γ3}. The cooling of the universe after the Big Bang plays a vital role
in the symmetry breaking of SU(5) to become SU(3)⊗SU(2)⊗U(1), and in the breakdown
of the sedenion algebra into a direct product of octonion and quaternion algebras. Such a
breakdown results in the flavor mixing of neutrinos and their mass oscillations.

Similar to the construction of eight of 3 × 3 lambda matrices in Equation (10C), for
the SU(3) generators from three pairs of creation and annihilation operators, from pairs
of five fermionic creation and annihilation operators, one can build a total of twenty-four
generalized lambda matrices as the SU(5) generators. Using the five pairs of the fermionic
creation and annihilation operators, one can construct ten pairs of 5 × 5 off-diagonal SU(5)
generator matrices as |m⟩⟨n|+ |n⟩⟨m|, −i|m⟩⟨n|+ i|n⟩⟨m|, for m ̸= n = 1, 2, . . . , 5. With
the same indices, one can build four off-diagonal but orthogonal 5 × 5 matrices. Therefore,
among these twenty-four SU(5) generators represented by 5 × 5 generalized lambda
matrices, there are four diagonal matrices and twenty off-diagonal matrices. The SU(5)
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symmetry plays an essential role in the GUT (grand unification theory) [27,28] and it has
been advocated to unify the electromagnetic, weak and strong interactions of elementary
particles. These three types of the eight-element octonion algebra are not independent of
each other because they contain the exact quaternion algebra {I, Γ1, Γ2, Γ3}.

3. Conclusions

In this work, we have presented a theoretical analysis of higher-dimensional models
beyond the conventional Dirac equation, which was proposed for a point-like fermion.
Dirac utilized four anti-commutative matrices for the first derivatives of a particle’s space
and time coordinates. The extension to higher-dimensional models is necessary because
the traditional Dirac theory cannot explain the origin of the observed three generations of
leptons and quarks in the Standard Model. In this study, we first consider a 16-element
group of 4 × 4 matrices as direct products of quaternion operators, i.e., three 2 × 2 Pauli
matrices and an identity matrix. This model contains three extra degrees of freedom to
incorporate a particle’s internal structure. This 16-element group has three 8-element sub-
groups, possessing a closure property for multiplications among 8 elements of each subset.
However, this direct-product matrix model with associative operators could not reproduce
Einstein’s mass–energy relation, unlike the model with 16 sedenion basis operators. The
significant difference between the two models is whether the operator multiplication is
associative or not, as illustrated by the differences in the multiplication tables of Figures 1
and 2. The 8-element octonion algebra is shown to be able to lead to a single lepton gen-
eration. However, we need a 16-element sedenion algebra to encompass precisely three
generations of leptons and quarks. We have shown from the color-coded table arrays in
Figure 2 that the sedenion algebra contains three distinct octonion algebras, with the U-,
V- and W-type operators, each type of octonion sub-algebra corresponding to a single
generation. We have also shown that in Equation (7A–C), the effective neutrinos’ rest mass
could be vanishingly small in comparison to that in Equation (6A–C) for the counterpart
charged leptons. We have also provided operator assignments in Equations (8A–C) and
(9A–C) to represent three generations of lighter and heavier quarks. Moreover, we have
shown that by adequately pairing up the octonion basis operators, one can construct eight
3 × 3 Gell-Mann lambda matrices as the eight generators for SU(3). For the U-, V- and
W-type octonion sub-algebra of the sedenion algebra, we could pair up the sedenion basis
operators to construct a total of twenty-four 5 × 5 matrices to represent the 24 generators
of SU(5). These three types of the eight-element octonion algebra contain the same quater-
nions {I, Γ1, Γ2, Γ3}. It is commonly believed that soon after the Big Bang of the universe,
the almost instant cooling process played an important role in the symmetry breaking for
SU(5) to become SU(3)⊗SU(2)⊗U(1) of the present Standard Model situation, and breaking
down sedenion algebra into the direct-product algebra of octonions and quaternions results
in neutrinos’ flavor mixing and mass-oscillation behavior. The main purpose of this work
is to point out the interesting relationship between sedenion algebra and SU(5). Although,
in Section 2.4, we explain qualitatively why neutrinos have vanishingly small rest masses
as compared to those of their counterpart charged leptons, we do not intend to solve all the
puzzles faced by the Standard Model such as neutrinos’ mass oscillations. More studies are
needed to address such an issue, which might involve combining this sedenion model for
SU(5) with the Higgs symmetry-breaking mechanism [29]. Such a challenging task is not
the primary interest of this work. The phenomenon of flavor mixing and oscillations among
neutrinos is an interesting and important issue. However, it is beyond the scope of this
work, and it awaits further investigation from other experts in this field of particle physics.
Through this work, by linking the sedenion algebra to SU(5) of GUT, which can be reduced
to SU(3)⊗SU(2)⊗U(1), we hope to offer a potential avenue toward the development of an
improved theory beyond the Standard Model.
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