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Abstract: The creating of novel models essentially stems from the requirement to appropriate describe
survival cases. In this study, a novel lifetime model with two parameters is proposed and studied
for modeling more types of data used in different study cases, including symmetric, asymmetric,
skewed, and complex datasets. The proposed model is obtained by compounding the exponential and
XLindley distributions, and it is regarded as a strong competitor for the widely applied symmetrical
and non-symmetrical models. Several characteristics and statistical properties are investigated. The
unknown parameters of the recommended model for the complete sample are estimated using
two estimation methods; notably, maximum likelihood estimation and Bayes techniques based on
several loss functions as well as an approximate tool are used to construct the confidence intervals
for the unknown parameters of the suggested model. The estimation procedures are compared
using a Monte Carlo simulation experiment to demonstrate their effectiveness. In the end, the
applicability and flexibility of the recommended model are conducted using two real lifetime datasets.
In our illustration, we compare the practicality of the recommended model with several well-known
competing distributions.

Keywords: Bayes techniques; confidence interval; lifetime model; maximum likelihood estimation;
simulation experiments; XLindley distribution

1. Introduction

Lifetime models are common statistical procedures which used in fitting and modeling
survival events for numerous descriptions of lifetime datasets, particularly engineering and
survival sciences. For fitting several kinds of data, many multi-parameter distributions are
considered in the statistical literature in the statistical literature. In the last decades, various
generated families of lifetime distributions have been introduced to model many datasets.
However, a classical distribution is not appropriate to fit such sophisticated data. For this
reason, the authors are motivated to obtain a novel extension of the existing distributions
using numerous techniques, including adding new parameters by generalizing the distri-
bution or mixing two or more classical distributions. These new statistical models provide
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greater flexibility in modeling for various applications such as engineering, biomedicine,
actuarial science, medicine, insurance, and environmental fields. In this context, Chouia
and Zeghdoudi [1] introduced a new extension of Lindley distribution named the XLindley
(XL) model. It is one way to describe the lifetime of a process or device, and it can be applied
in several areas of study, such as medical science, lifetime, insurance, and hydrology. It can
be considered a more efficient model than symmetrical models, notably normal distribution.
A random variable (RV) Y1 is said to have XL distribution if its probability density function
(pdf) and survival function (sf) can be expressed, respectively, as follows:

g(y1) =
θ2e−θy1(θ + y1 + 2)

(θ + 1)2 , y1 > 0, θ > 0,

and

S1(y1) =

(
θy1

(θ + 1)2 + 1
)

e−θy1 .

In the last few decades, several researchers have given special attention to the XL
distribution due to its importance in fitting skewed, asymmetric, complex, and lifetime
datasets. For example, Fatima et al. [2] provided certain properties of the Poisson Quasi
XLindley distribution, and they demonstrated that it is more efficient and works better in
analyzing lifetime datasets than other well-known models. Beghriche et al. [3] proposed
the inverse XLindley model by applying the inverse method, which is more appropriate in
modeling mortality studies. The exponentiated XLindley model was defined by Alomair
et al. [4], who established numerous mathematical properties concerning the new distribu-
tion. A new flexible generalized XLindley model was considered by Musekwa et al. [5].
Gemeay et al. [6] established the modified XLindley distribution and investigated various
tools for estimating the parameters.

In the context of distribution theory, the compound method is one of the most popular
choices for fitting several types of datasets, such as skewed and lifetime data. It has been
used in numerous domains of studies including economic, biology, actuarial, and envi-
ronmental (see Abdelghani et al. [7], Meraou et al. [8–11], and Jafari and Tahmasebi [10]).
The compound distributions are defined as the minimum or maximum of M independent
and identically distributed (i.i.d) RVs. Several authors applied this technique in their
works, for example, one may refer to Mahmoudi and Jafari [12] who introduced gener-
alized exponential–power series models by compounding generalized exponential and
power series distributions. The inverted Nadarajah–Haghighi power series distributions
are considered by Ahsan-ul-Haq et al. [13]. In the same way, the exponential Poisson model
was introduced by Cancho et al. [14], and Yousef et al. [15] defined the unit Gompertz
power series distribution and estimated the model parameter using the ranked set sampling
method. It is worth motioning that the exponential (Exp) model has received considerable
attention in the literature. It is efficiency in analyzing engineering, finance, and climatology
phenomena. Further, The Exp model can be extensively implemented to fit the failure
times of components and systems. Numerous authors applied the Exp model in numerous
applications. A RV Y2 follows the Exp distribution if its pdf and sf can be formulated by

h(y2) = β e−βy2 , y2 > 0, β > 0,

and
S2(y2) = e−βy2 .

Despite these advancements, when there are different kinds of datasets in survival and
lifetime, many existing methods lack flexibility and may not provide the best fit. To over-
come this challenge, we defined a novel distribution named the Compound Exponential
XLindley (CEXL) model, and it can be used in different areas including lifetime and engi-
neering fields. This proposed model has two parameters and is obtained by compounding
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the Exp and XL distributions. Let us consider the RVs Y1 and Y2 that are i.i.d, and assume
that X = min(Y1, Y2). The sf of the random variable of X is

S(x) = S1(x)S2(x) (1)

Additionally, another objective of this study is to explore estimating the CEXL model
parameters using two traditional estimation methods, such as maximum likelihood estima-
tion, and Bayesian methods under the square error loss function. For more information
about lifetime analysis and Bayesian inference, one may cite the works of Xu et al. [16],
Xu et al. [17], Wang et al. [18], Muqrin [19], and Wu and Gui [20]. Also, we construct the
confidence intervals for model parameters using the approximate of the MLE method.

The remaining part of the current study is structured as given: The suggested com-
pound model is developed and studied in Section 2. The underlying characteristics of
the CEXL distribution such as k-th moment, moment generating function, distribution of
order statistics, and certain entropy measures are investigated in Section 3. In Section 4,
we provide two estimation procedures for estimating the model parameters. We conduct
some numerical simulation experiments in Section 5 to observe the effectiveness of the
proposed MLE and Bayes methods. Finally, in Section 6, two lifetime datasets are analyzed
for validation purposes. Finally concluding remarking has been obtained for this study In
Section 7.

2. Compound Exponential XLindley Model

A continuous RV X is said to follow the proposed CEXL model with parameters θ and
β if its cumulative distribution function (cdf) and pdf are expressed, respectively, as follows:

F(x) = 1 −
(

θx
(θ + 1)2 + 1

)
e−(θ+β)x, x > 0, θ, β > 0, (2)

and
f (x) =

1
(θ + 1)2

(
θ(θ + β)x + (θ + 1)2(θ + β)− θ

)
e−(θ+β)x. (3)

From now on, we assume that X ∼ CEXL(θ, β).
It is evident that the proposed CEXL model contains a sub model as a special case. If θ

tends to be 0, the recommended CEXL reduces to an Exp distribution; when β approaches 0,
we have an XL distribution. Figure 1 demonstrates the graphs for the pdf of the proposed
model given in Equation (3) using several parameters recors. It is highly positively skewed
and uni-modal as well, as it is good for modeling skewed datasets.
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Figure 1. Possible pdf shapes of the CEXL model.

Henceforth, the sf and hazard rate function (hrf) of the RV X are

S(x) =
(

θx
(θ + 1)2 + 1

)
e−(θ+β)x,

and

h(x) =
1

(θ + 1)2

(
θx

(θ + 1)2 + 1
)−1(

θ(θ + β)x + (θ + 1)2(θ + β)− θ
)

. (4)

From the hrf of the CEXL model, h(0) = θ + β − θ

(θ + 1)2 and h(∞) = 0. The graphs

for the hrf of the proposed model given in Equation (4) are demonstrated in Figure 2 for
different parameter values of θ and β. Clearly, for all parameter values of θ and β, our CEXL
distribution has a decreasing hrf, which confirms the flexibility of the recommended model.
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Figure 2. Possible hrf shapes of the CEXL model.

Similarly, the cumulative hazard rate function H(x) and inverse hazard rate function
R(x) of the RV X are

H(x) =(θ + β)x − log
(

θx
(θ + 1)2 + 1

)
,

and

R(x) =

1
(θ + 1)2

(
θ(θ + β)x + (θ + 1)2(θ + β)− θ

)
e−(θ+β)x

1 −
(

θx
(θ + 1)2 + 1

)
e−(θ+β)x

.

The Odds function of the proposed CEXL model can be defined as the ratio of the cdf
and sf. It verifies the non-monotone hrf and can be written as

O(x) =
(1 + θ)2 − (θx + (1 + θ)2)e−(θ+β)x

(θx + (1 + θ)2)e−(θ+β)x
.

3. The Characteristics of the CEXL Model

This section introduces several statistical properties of the proposed CEXL model—
notably, the k-th moment, mean, variance, moment generating function, characteristic
function, distribution of order statistics, and some entropy measures—because of its impor-
tance in distribution theory.

3.1. Moments with Related Measures

Let the RV X have the CEXL model. The proposed expression k-th moment of X is
given below:

µ′
k =

θΓ(k + 2)
(θ + 1)2(θ + β)k+1 +

Γ(k + 1)
(θ + β)k − θΓ(k + 1)

(θ + 1)2(θ + β)k+1 , (5)

where Γ(n) = (n − 1)! for n = 1, 2; . . ..
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Proof. The expression of k moment of X can be defined as

µ′
k =

∫ ∞

0
xk f (x) dx

=
1

(θ + 1)2

∫ ∞

0
xk
[
θ(θ + β)x + (θ + 1)2(θ + β)− θ

]
e−(θ+β)x dx

=
1

(θ + 1)2

{
θ(θ + β)

∫ ∞

0
xk+1e−(θ+β)x dx + (θ + 1)2(θ + β)

∫ ∞

0
xke−(θ+β)x dx

− θ
∫ ∞

0
xke−(θ+β)x dx

}

=
1

(θ + 1)2

{
θ(θ + β)

Γ(k + 2)
(θ + β)k+2 + (θ + 1)2(θ + β)

Γ(k + 1)
(θ + β)k+1 − θ

Γ(k + 1)
(θ + β)k+1

}

=
θΓ(k + 2)

(θ + 1)2(θ + β)k+1 +
Γ(k + 1)
(θ + β)k − θΓ(k + 1)

(θ + 1)2(θ + β)k+1 .

Henceforth, the first and second moment of X come out to be

µ′
1 =

1
θ + β

(
1 +

θ

(θ + 1)2(θ + β)

)
,

and

µ′
2 =

2
(θ + β)2

(
1 +

2θ

(θ + 1)2(θ + β)

)
.

The variance and coefficient of variation (CV) of X are

V(X) =
1

(θ + β)2

(
2 +

4θ

(θ + 1)2(θ + β)
−
[

1 +
θ

(θ + 1)2(θ + β)

]2
)

,

and

CV =

{
2 +

4θ

(θ + 1)2(θ + β)
−
[

1 +
θ

(θ + 1)2(θ + β)

]2
}1/2

1 +
θ

(θ + 1)2(θ + β)

.

At the end, the coefficients for skewness (S) and the kurtosis (K) of the RV X are

S =
µ3 − 3µ2 + 2µ3

1
(µ2 − µ2

1)
3/2

,

and

K =
µ4 − 4µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
.

Now, the moment generating function (mgf) and characteristic function (cf) of X are
given, respectively, below:

M(t) =
∫ ∞

0
etx f (x) dx =

∞

∑
m=0

tm

m!
θΓ(k + 2)

(θ + 1)2(θ + β)k+1 +
Γ(k + 1)
(θ + β)k − θΓ(k + 1)

(θ + 1)2(θ + β)k+1 ,

and

ϕi(t) =
∫ ∞

0
eitx f (x) dx =

∞

∑
i=0

(it)m

m!
θΓ(k + 2)

(θ + 1)2(θ + β)k+1 +
Γ(k + 1)
(θ + β)k − θΓ(k + 1)

(θ + 1)2(θ + β)k+1 .
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Table 1. Possible statistical properties of the CEXL model for several parameter values.

β Mean V CV S K
θ = 0.2 0.3 2.5534 5.9164 0.9526 1.8088 4.7294

0.6 1.4664 2.0630 0.9795 1.9076 5.3646
0.9 1.0235 1.0240 0.9887 1.9419 5.5624
1.2 0.7849 0.6073 0.9929 1.9597 5.6942

θ = 0.4 0.3 1.8437 3.0561 0.9482 1.7934 4.6561
0.6 1.2026 1.3645 0.9713 1.8759 5.1578
0.9 0.8889 0.7613 0.9816 1.9149 5.4018
1.2 0.7039 0.4825 0.9869 1.9342 5.5075

θ = 0.6 0.3 1.4001 1.7902 0.9556 1.8165 4.8211
0.6 0.9956 0.9372 0.9723 1.8785 5.1826
0.9 0.7705 0.5715 0.9812 1.9146 5.4292
1.2 0.6276 0.3833 0.9864 1.9344 5.5485

θ = 0.8 0.3 1.1135 1.1599 0.9672 1.8649 5.1215
0.6 0.8406 0.6769 0.9787 1.9121 5.4423
0.9 0.6741 0.4406 0.9847 1.9336 5.5846
1.2 0.5622 0.3090 0.9889 1.9493 5.6663

θ = 1 0.3 0.9178 0.7967 0.9725 1.8779 5.1348
0.6 0.7235 0.5038 0.9811 1.9113 5.3603
0.9 0.5963 0.3457 0.9861 1.9309 5.4854
1.2 0.5069 0.2514 0.9893 1.9445 5.5754

θ = 1.2 0.3 0.7764 0.5780 0.9793 1.9180 5.4884
0.6 0.6316 0.3867 0.9847 1.9463 5.7368
0.9 0.5321 0.2764 0.9880 1.9542 5.775
1.2 0.4596 0.2070 0.9899 1.9554 5.7525

The numerical results of numerous statistical measures, as discussed previously, of the
proposed CEXL model using specific parameter values are summarized in Table 1. From
these values, it can be deduced that our CEXL distribution is more efficient for explaining
more datasets.

3.2. Order Statistics

We draw a random sample of size n X1, X2, . . . , Xn from the CEXL model and X(1), X(2),
. . . , X(n) represent its order statistics. The pdf of the j-th order statistic X(j) is expressed
as follows:

d(j)(x) =
n!

(j − 1)!(n − j)!
f (x)[F(x)]j−1[1 − F(x)]n−j (6)

=
n!

(j − 1)!(n − j)!(1 + θ)2)

{
θ(θ + β)x + (θ + 1)2(θ + β)− θ

}
e−(θ+β)x (7)

×
{

1 −
(

θx
(θ + 1)2 + 1

)
e−(θ+β)x

}j−1{( θx
(θ + 1)2 + 1

)
e−(θ+β)x

}n−j
. (8)

The associated cdf of X(j) is

D(j)(x) =
n

∑
i=j

Fi(x)[1 − F(z)]n−i

=
n

∑
i=j

n−i

∑
k=0

(
n
i

)(
n − i

k

)
(−1)iFk+i(x)

=
n

∑
i=j

n−i

∑
k=0

(
n
i

)(
n − i

k

)
(−1)i

{
1 −

(
θx

(θ + 1)2 + 1
)

e−(θ+β)x
}k+i

.
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From Equation (6), the probability distribution of maximum X(n) = max{x1, x2, . . . , xn}
and minimum X(1) = min{x1, x2, . . . , xn} are obtained by setting j = n and j = 1, respec-
tively, and they are given as

d(n)(x) =
n

(1 + θ)2)

{
θ(θ + β)x + (θ + 1)2(θ + β)− θ

}
e−(θ+β)x

×
{

1 −
(

θx
(θ + 1)2 + 1

)
e−(θ+β)x

}n−1
,

and

d(1)(x) =
n

(1 + θ)2)

{
θ(θ + β)x + (θ + 1)2(θ + β)− θ

}
e−(θ+β)x

×
{(

θx
(θ + 1)2 + 1

)
e−(θ+β)x

}n−1
.

3.3. Information Measure of the CEXL Model

Here, we discuss several entropy’s such as Rényi, Shannon, Havrda and Charvat,
Tsallis, Arimoto, and Mathai–Haubold. The proposed entropy measures have a key role in
information amounts.

In information theory, Renyi entropy [21] φ1(γ) is an important measure, and it is
defined as

φ1(γ) =
1

1 − γ
log
(∫ ∞

0
f γ(x) dx

)
γ ̸= 1, γ > 0.

=
1

1 − γ
log
(∫ ∞

0

[
1

(θ + 1)2

(
θ(θ + β)x + (θ + 1)2(θ + β)− θ

)
e−(θ+β)x

]γ

dx
)

=
1

1 − γ
log
(

1
(θ + 1)2γ

Ψγ,θ,β(x)
)

,

with Ψγ,θ,β(x) =
∫ ∞

0

[
θ(θ + β)x + (θ + 1)2(θ + β)− θ

]γ
e−γ(θ+β)x dx.

Shannon’s entropy [22] φ2 is defined as

φ2 = E(− log f (x))

= E
(
− log

[
1

(θ + 1)2

(
θ(θ + β)x + (θ + 1)2(θ + β)− θ

)
e−(θ+β)x

])
= 2 log(θ + 1)− E

(
log[θ(θ + β)x + (θ + 1)2(θ + β)− θ]

)
+ E((θ + β)x)

Further, another uncertainty information measure is Havrda and Charvat entropy [23],
φ3(γ), and it is expressed as

φ3(γ) =
1

21−γ − 1

[∫ ∞

0
( f γ(x) dx)1/γ − 1

]
γ ̸= 1, γ > 0.

=
1

21−γ − 1

[
1

(θ + 1)2 ∆γ,θ,β(x)− 1
]

,

with ∆γ,θ,β(x) =
∫ ∞

0

([
θ(θ + β)x + (θ + 1)2(θ + β)− θ

]γ
e−γ(θ+β)x dx

) 1
γ .
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Using the proposed distribution, the Tsallis entropy [24] φ4(γ) is defined as

φ4(γ) =
1

1 − γ

(
1 −

∫ ∞

0
f γ(x) dx

)
γ ̸= 1, γ > 0.

=
1

1 − γ

(
1 − 1

(θ + 1)2γ
Ψγ,θ,β(x)

)
.

Next, we consider the Arimoto entropy [25] φ5(γ) of the recommended model, which
is

φ5(γ) =
γ

γ − 1

[∫ ∞

0
( f γ(x) dx)1/γ − 1

]
γ ̸= 1, γ > 0.

=
γ

γ − 1

[
1

(θ + 1)2 ∆γ,θ,β(x)− 1
]

.

Finally, a new extension entropy measure named the Mathai–Haubold entropy [26]
φ6(γ) is provided in this subsection. It is written as

φ6(γ) =
1

γ − 1

(∫ ∞

0
f 2−γ(x) dx − 1

)
γ ̸= 1, γ > 0.

=
1

γ − 1

(∫ ∞

0

[
1

(θ + 1)2

(
θ(θ + β)x + (θ + 1)2(θ + β)− θ

)
e−(θ+β)x dx

]2−γ

− 1

)

=
1

γ − 1

(
1

(θ + 1)2(2−γ)
Φγ,θ,β(x)− 1

)
,

with Φγ,θ,β(x) =
(∫ ∞

0

[
θ(θ + β)x + (θ + 1)2(θ + β)− θ

]
e−(θ+β)x dx

)2−γ

.

Tables 2 and 3 report certain numerical values of the proposed entropy measures of
the CEXL distribution by applying numerous parameter values of θ and β. Also, the 3D
curves of these measures are sketched in Figures 3 and 4.

Table 2. Different numerical records of proposed entropy measures at γ = 1.5.

θ φ1(γ) φ2 φ3(γ) φ4(γ) φ5(γ) φ6(γ)

β = 0.5 0.25 1.3049 1.4802 1.6362 0.9584 1.0581 −0.5567
0.5 1.0258 1.1998 1.3699 0.8025 0.8688 −0.4524

0.75 0.7793 0.9554 1.1018 0.6454 0.6863 −0.3541
1 0.5706 0.7487 0.8475 0.4965 0.5197 −0.2659

β = 1 0.25 0.71610 0.8973 1.0275 0.6019 0.6370 −0.3278
0.5 0.5534 0.7328 0.8252 0.4834 0.5053 −0.2584

0.75 0.3921 0.5719 0.6079 0.3561 0.3676 −0.1868
1 0.2452 0.4255 0.3939 0.2307 0.2354 −0.1189

β = 1.5 0.25 0.3460 0.5286 0.5424 0.3177 0.3268 −0.1657
0.5 0.2320 0.4132 0.3739 0.2190 0.2232 −0.1127

0.75 0.1127 0.2937 0.1871 0.1096 0.1106 −0.0556
1 0.0215 0.2027 0.0366 0.0214 0.0215 −0.0107
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Table 3. Different numerical records of proposed entropy measures at γ = 3.

θ φ1(γ) φ2 φ3(γ) φ4(γ) φ5(γ) φ6(γ)

β = 0.5 0.25 1.0572 1.4802 1.1724 0.4396 0.7587 3.6422
0.5 0.7791 1.1998 1.0526 0.3947 0.6077 1.875

0.75 0.5288 0.9554 0.8702 0.3263 0.4456 0.9396
1 0.3163 0.7487 0.6250 0.2344 0.2852 0.4412

β = 1 0.25 0.4582 0.8973 0.8001 0.3000 0.3948 0.7502
0.5 0.2971 0.7328 0.5973 0.224 0.2695 0.4057

0.75 0.1347 0.5719 0.3149 0.1181 0.1289 0.1546
1 −0.0139 0.4255 −0.0376 −0.0141 −0.0140 −0.0137

β = 1.5 0.25 0.0848 0.5286 0.2080 0.0780 0.0824 0.0924
0.5 −0.0282 0.4132 −0.0774 −0.0290 −0.0285 −0.0274

0.75 −0.1480 0.2937 −0.4593 −0.1722 −0.1555 −0.1281
1 −0.2621 0.1808 −0.9188 −0.3446 −0.2864 −0.2040
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Figure 3. 3D curves of proposed entropy measures at γ = 1.5.
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Figure 4. 3D curves of proposed entropy measures at γ = 3.

4. Statistical Inference of CEXL Model

In this part of the work, we provide statistical inference for complete samples of
our CEXL model. In the complete sample, we discuss two estimation processes and also
construct the confidence intervals for the model parameters.

4.1. Estimation Based on Maximum Likelihood Method

Let us assume that {x1, . . . , xn} is a random sample from the proposed model with
parameters θ and β. The corresponding log-likelihood function LL(η) is

LL(η) = n − 2n log(θ + 1)− (θ + β)
n

∑
i=1

xi +
n

∑
i=1

log
[
θ(θ + 1)2xi + (θ + 1)2(θ + β)− θ

]
,

where η = (θ, β). With respect to θ and β, the non linear equations are describes as follows

∂LL(η)
∂θ

= − 2n
θ + 1

−
n

∑
i=1

xi +
n

∑
i=1

xi[2θ(θ + 1) + (θ + 1)2] + 2(θ + 1)(θ + β) + (θ + 1)2 − 1
θ(θ + 1)2xi + (θ + 1)2(θ + β)− θ

, (9)

and
∂LL(η)

∂β
= −

n

∑
i=1

xi +
n

∑
i=1

(θ + 1)2

θ(θ + 1)2xi + (θ + 1)2(θ + β)− θ
. (10)

By solving Equation (10), we can obtain a closed form of the MLE of β, β̂, which
ensures that it exists and it is unique. It can be written as

β̂ =
1

n(θ + 1)2

(
1

(θ + 1)2

n

∑
i=1

xi − θ(θ + 1)
n

∑
i=1

xi − nθ

)
− θ. (11)
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Now, for θ, it is simple to prove that the MLE of θ, θ̂, can be found as a fixed point
solution of the equation

f (θ) = θ, (12)

with

f (θ) =
n

∑
i=1

xi

(
2nθ(θ + 1)2 xi + (θ + 1)2(θ + β)− θ

xi[2θ(θ + 1) + (θ + 1)2] + 2(θ + 1)(θ + β) + (θ + 1)2 − 1

)
− 1

∑n
i=1 xi

− 1.

We used the R software to apply the fixed point procedure at j stage to solve Equa-
tion (12). From the above equation, it is clear that lim

θ−→0
f (θ) = 0 and lim

θ−→∞
f (θ) = c, where

c = − 1
∑n

i=1 xi
− 1 < 0, and since f ′(θ) < 0 we can conclude that the function f (θ) is

monotonically decreasing for 0 < θ < ∞. Consequently, final estimate of θ exists and it is
unique.

Now, for constructing the confidence intervals (CIs) of the parameters, we use the
asymptotic distribution of MLE of η. Precisely,

(η̂− η)
D−→ N2(0, F−1(η)),

where η̂ is the MLE of η and F−1(η) is the inverse of the observed information matrix of η,
which has a size of 2 by 2, and it is presented as

F−1(η) =


∂2LL(η)

∂θ2
∂2LL(η)

∂θ∂β
∂2LL(η)

∂β∂θ

∂2LL(η)
∂β2


Finally, with η1 = θ and η2 = β, the lower confidence limit (LCL) and upper confidence

limit (UCL) of (1 − α)% CI of Σk are

LCB = η̂i − tα/2

√
F−1(η̂i), i = 1, 2,

and
UCB = η̂i + tα/2

√
F−1(η̂i), i = 1, 2,

where tα/2 is the upper α/2 quantile of the standard normal distribution, N(0, 1).

4.2. Bayes Procedure

In statistical inference, the Bayesian approach denotes a non-classical method of esti-
mation. It consists of considering it as a random variable that is estimated on the basis of
information coming from the sample and taking into account the opinion of the experts,
summarized by a law called the a priori law. The choice of the prior distribution is crucial
for Bayesian analysis because it directly affects the posterior distributions. Schematically,
we can highlight two modes of thinking. The first is subjective and considers that the prior
distribution reflects knowledge resulting from professional experiences and reasonable
intuitions before observing the data. This information is expressed by a so-called infor-
mative law. The second way of thinking is more objective. It is used when there is little
information. It is then a question of being able to remain Bayesian in the absence of a priori
information. Therefore, we are looking for non-informative prior distributions expressing a
priori ignorance but treating the parameters as random.

Let us consider θ and β as random variables following the gamma distribution with
parameters α1, β1, α2, and β2.

π1(θ) =
βα1

1
Γ(α1)

θα1−1 e−β1θ , θ, α1, β1 > 0,



Symmetry 2024, 16, 625 13 of 21

and

π2(β) =
βα2

2
Γ(α2)

βα2−1 e−β2β, β, α2, β2 > 0.

The joint density of η = (θ, β) will be

π(η) = π1(θ)π2(β) ∝ θα1−1 βα2−1 e−β1θ−β2β.

Then, the posterior distribution will be

π∗(η | x) =
n

∏
i=1

f (xi) π(η)

= θα1−1 βα2−1 e−β1θ−β2β(θ + 1)−2n
n

∏
i=1

(
θ(θ + β)xi + (θ + 1)2(θ + β)− θ

)
e−(θ+β)xi .

The Bayes estimator under square error (SE) loss function D = (η− η̂)2 would result
as follows:

D̂SE =
∫

η
D π∗(η | x) dη. (13)

The Bayes estimator under linear exponential (LI) loss function D = exp(d(η− η̂))−
(η− η̂) would result as follows:

D̂LI = −1
d

log
(∫

η
e−dD π∗(η | x) dη

)
. (14)

Based on the general entropy (GE) loss function D =
(

η̂
η

)d
− d log

(
η̂
η

)
− 1, the Bayes

estimator would result as follows:

D̂GE =

(∫
η
D−d π∗(η | x) dη

)−1/d
. (15)

The integral in Equations (13)–(15) does not have an explicit form. For this, we applied
MCMC technique to achieve an approach for this integral.

5. Simulation Study

Here, several simulation studies are conducted to demonstrate the effectiveness of
the recommended estimators (MLE and Bayes estimations) for the recommended CEXL
distribution. Recall that all computations are computed using R software.

We use the parameter values (Case 1 = (0.6, 1.2), Case 2 = (0.5, 1.1), and Case 3 =
(0.75, 1.3)), and associated the sample sizes n = 25, 50, 75, 100 with 1000. For each case and
under 1000 replications of the process, we draw a random sample from our CEXL model
by applying the following steps of generation:

• We independently generate random samples v1 and v2 from the U(0,1) distribution;
• Compute y1 = F−1

1 (v1), where F1 denotes the cdf of exponential distribution;
• Compute y2 = F−1

2 (v2), where F2 denotes the cdf of XLindley distribution;
• Obtain a random sample from the proposed CEXL model as X = min(y1, y2).

Henceforth, we compute the average estimate (AVEs) with its associated mean square
errors (MSEs) of the unknown parameters θ and β using the two procedures listed as MLE
and Bayesian under several loss function methods. The results are displayed in Tables 4–6.

Finally, we calculate the 95% simulated CIs for the model parameters with its average
lengths (ALs) and coverage probabilities (CPs). Tables 7–9 reported the obtained results.
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Table 4. The possible AVE and MSE values of the CEXL model using Case 1.

n MLE Bays (SE) Bays (LI) Bays (GE)

AVE MSE AVE MSE AVE MSE AVE MSE

25 θ 0.6313 0.2477 0.6291 0.0027 0.6319 0.0031 0.6321 0.0033
β 1.2494 0.2985 1.2447 0.0024 1.2453 0.0027 1.2450 0.0029

50 θ 0.6265 0.2231 0.5906 0.0013 0.5924 0.0016 0.5926 0.0019
β 1.2290 0.1899 1.1848 0.0023 1.1879 0.0026 1.1865 0.0029

75 θ 0.6165 0.2132 0.6236 0.0010 0.6243 0.0013 0.6243 0.0016
β 1.2097 0.1557 1.2321 0.0016 1.2329 0.0019 1.2325 0.0021

100 θ 0.5928 0.2019 0.6054 0.0009 0.6095 0.0011 0.6097 0.0014
β 1.1996 0.1531 1.1952 0.0005 1.1959 0.0008 1.1955 0.0011

Table 5. The possible AVE and MSE values of the CEXL model using Case 2.

n MLE Bays (SE) Bays (LI) Bays (GE)

AVE MSE AVE MSE AVE MSE AVE MSE

25 θ 0.6458 0.2396 0.6095 0.0216 0.6246 0.0219 0.6253 0.0301
β 0.9337 0.2181 1.0526 0.0219 1.0801 0.0301 1.0706 0.0304

50 θ 0.6056 0.2346 0.5773 0.0114 0.5853 0.0117 0.5864 0.0201
β 0.9483 0.2029 1.0915 0.0050 1.0986 0.0053 1.0959 0.0056

75 θ 0.5627 0.2013 0.5160 0.0042 0.5218 0.0045 0.5235 0.0048
β 1.0193 0.1753 1.1338 0.0047 1.1439 0.0050 1.1396 0.5053

100 θ 0.5380 0.1852 0.5294 0.0039 0.5345 0.0042 0.5357 0.0045
β 1.0673 0.1661 1.1009 0.0040 1.1084 0.0043 1.1055 0.0046

Table 6. The possible AVE and MSE values of the CEXL model using Case 3.

n MLE Bays (SE) Bays (LI) Bays (GE)

AVE MSE AVE MSE AVE MSE AVE MSE

25 θ 0.6693 0.2162 0.7158 0.0116 0.7308 0.0119 0.7297 0.0121
β 1.3686 0.3021 1.2315 0.00191 1.2515 0.0194 1.2428 0.0197

50 θ 0.7090 0.2006 0.7195 0.0112 0.7423 0.0115 0.7396 0.0118
β 1.3527 0.2090 1.2577 0.0059 1.2640 0.0062 1.2610 0.0065

75 θ 0.7061 0.1991 0.7336 0.0034 0.7383 0.0037 0.7378 0.0040
β 1.3311 0.1567 1.2600 0.0053 1.2685 0.0056 1.2645 0.0059

100 θ 0.7379 0.1762 0.7596 0.0024 0.7703 0.0027 0.7686 0.0030
β 1.3304 0.1351 1.3125 0.0042 1.3186 0.0045 1.3156 0.0048

Table 7. The possible AL and CP values of the CEXL model using Case 1.

n MLE Bays (SE) Bays (LI) Bays (GE)

AL CP AL CP AL CP AL CP

25 θ 0.5345 0.947 0.5074 0.972 0.5146 0.968 0.5178 0.961
β 0.6176 0.945 0.5243 0.971 0.5643 0.951 0.5675 0.945

50 θ 0.4873 0.924 0.4137 0.984 0.4357 0.962 0.4487 0.954
β 0.5474 0.913 0.4782 0.957 0.4964 0.937 0.5079 0.932

75 θ 0.4235 0.924 0.3672 0.972 0.3968 0.943 0.4153 0.938
β 0.4812 0.912 0.4067 0.984 0.4388 0.963 0.4449 0.954

100 θ 0.3579 0.935 0.2868 0.991 0.3211 0.975 0.2409 0.970
β 0.3928 0.948 0.3491 0.985 0.3749 0.962 0.3834 0.960
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Table 8. The possible AL and CP values of the CEXL model using Case 2.

n MLE Bays (SE) Bays (LI) Bays (GE)

AL CP AL CP AL CP AL CP

25 θ 0.6658 0.926 0.5837 0.952 0.6017 0.938 0.6155 0.931
β 0.7853 0.933 0.7129 0.955 0.7369 0.933 0.7451 0.931

50 θ 0.5943 0.938 0.5127 0.964 0.5449 0.948 0.5648 0.943
β 0.7233 0.947 0.6779 0.974 0.6983 0.962 0.7108 0.959

75 θ 0.4218 0.944 0.4308 0.977 0.4597 0.956 0.4776 0.952
β 0.6648 0.952 0.5884 0.972 0.6119 0.964 0.6352 0.962

100 θ 0.3764 0.952 0.2977 0.984 0.3234 0.977 0.3581 0.972
β 0.5981 0.958 0.51237 0.989 0.5436 0.980 0.5648 0.978

Table 9. The possible AL and CP values of the CEXL model using Case 3.

n MLE Bays (SE) Bays (LI) Bays (GE)

AL CP AL CP AL CP AL CP

25 θ 0.5473 0.936 0.4932 0.962 0.5267 0.951 0.5576 0.948
β 0.6732 0.936 0.6014 0.963 0.6328 0.955 0.6453 0.950

50 θ 0.4693 0.951 0.4019 0.976 0.4364 0.963 0.4433 0.958
β 0.6252 0.952 0.5381 0.972 0.5564 0.966 0.5716 0.964

75 θ 0.4157 0.951 0.3447 0.976 0.3659 0.968 0.3902 0.960
β 0.5791 0.956 0.4623 0.977 0.4917 0.968 0.5113 0.962

100 θ 0.3786 0.964 0.2811 0.988 0.3220 0.976 0.3526 0.971
β 0.5119 0.959 0.4134 0.986 0.4462 0.977 0.4602 0.975

Concluding Remarks on Simulation

1. For the two proposed estimation techniques, as we grow n, the MSEs diminish in all
cases.

2. The MLE and Bayes estimators are consistent and asymptotically unbiased.
3. With considering the MSEs as an optimally criteria, we find that the Bayes estimator

based on the SE loss function is the best method of estimation over the MLE.
4. The ALs tend to decrease as n increases in the two suggested estimation methods.
5. For comparing the CIs with considering the AL as an optimally criteria, we find that

the CIs constructed based on the Bayes methods are more appropriate than the MLEs.
6. The Bayes estimator usually lies below the nominal level of 95% and is more efficient

than the one based on MLE.

6. Real Data Analysis

This section demonstrate the adaptability of our CEXL model using two real datasets
for checking the effectiveness and performance among several well-known distributions.

The first dataset consists of the remission times of bladder cancer patients, and it was
previously studied by Abouelmagd et al. [27] and Cordeiro et al. [28]. The observation of
datasets is written in Table 10.

Table 10. The remission times of bladder cancer patients.

17.36 17.14 17.12 16.62 15.96 14.83 14.77 14.76 14.24 13.80 13.29 13.11 12.63
12.07 12.03 12.02 11.98 11.79 11.64 11.25 10.75 10.66 10.34 10.06 9.74 9.47
9.22 9.02 8.66 8.65 8.53 8.37 8.26 7.93 7.87 7.66 7.63 7.62 7.59
7.39 7.32 7.28 7.26 7.09 6.97 6.94 6.93 6.76 6.54 6.25 5.85 5.71
5.62 5.49 5.41 5.41 5.34 5.32 5.32 5.17 5.09 5.06 4.98 4.87 4.51
4.50 3.02 4.40 4.34 4.33 4.26 4.23 4.18 3.88 3.82 3.70 3.64 3.57
3.52 3.48 3.36 3.36 3.31 3.25 2.87 2.83 2.75 2.69 2.69 2.64 2.62
2.54 2.46 2.26 2.23 2.09 2.07 2.02 2.02 1.76 1.46 1.40 1.35 1.26
1.19 1.05 0.90 0.81 0.51 0.50 0.40 0.20
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The second dataset represents the waiting time (in minutes) of 100 bank customers.
The considered data were studied originally by Ghitany et al. [29] and also provided by
Bhati et al. [30]. The values of the dataset are reported in Table 11.

Table 11. Waiting time of 100 bank customers (in minutes).

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1 3.2 3.3 3.5
3.6 4 4. 4.2 4.2 4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9
5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1
7.1 7.4 7.6 7.7 8 8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5 11.9 12.4 12.5 12.9 13.0
13.1 13.3 13.6 13.7 13.9 14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0
19.9 20.6 21.3 21.4 21.9 23 27 31.6 33.1 38.5

The summary statistics for the proposed datasets with the kernel density, TTT, and
box plots are displayed, respectively, in Table 12 and Figure 5.

Table 12. Summary statistics for the two considered datasets.

Dataset Q1 Median Mean Q3 CV S K
I 2.870 5.340 6.408 8.660 3.012 0.738 −0.312
II 0.891 1.717 1.801 2.237 0.851 1.196 1.3517
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Figure 5. Kernel density, TTT, and box plots of the two proposed datasets.

The Inverse Weibull (IW), Nadarajah Haghighi (NH), Alpha power transformed
exponential (APTE), Zero truncated Poisson exponential (ZTPE), Zero truncated Poisson
Lindley (ZTPL), EXP, and XL distributions are used to compare with our recommended
CEXL model. The cdfs of the recommended model can be, respectively, expressed as
follows:

1. IW:

F(x) = e−θx−β
, x; β, θ > 0, (16)



Symmetry 2024, 16, 625 17 of 21

2. NH:

F(x) = 1 − e1−(1+βx)θ
, x > 0 , θ, β > 0.

3. APTE:

F(x) =
β1−e−θx − 1

β − 1
; x > 0, β ̸= 1 β, θ > 0.

4. ZTPE:

F(x) =
eβ(1−e−θx) − 1

eβ − 1
; x > 0, β, θ > 0.

5. ZTPL:

F(x) =
eβ
(

e−θx
( 1+θ+θx

1+θ

))
− 1

eβ − 1
; x > 0, β, θ > 0.

Table 13 summarizes the result of the estimation of the unknown parameters for
our CEXL model and other selected distributions using the MLE tool. In order to select
more adequate model for modelling the two datasets, we compute some statistic mea-
sures, notably, Akaike information criterion (A), Bayesian information criterion (B), and
Kolmogorov–Smirnov (KS) with its associated p-values. Also, Table 13 displays these
results. The values of A, B, and KS for our proposed CEXL model are smaller in compari-
son to the existing well-known distributions, which implies that our CEXL model is best
fitting model for analyzing the two datasets than the other fitted distributions. Figures 6–9,
respectively, represent the estimated pdf, cdf, and sf for the two datasets using our and the
fitting models. These figures also highlight that the CEXL model performed better than the
competing models.
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Figure 6. Estimation plots of pdf and cdf of the fitting distributions using the first dataset.
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Table 13. Estimated, comparison criterion, and goodness-of-fit statistics for the two datasets.

Data Distribution θ̂ β̂ KS p-Value A B

CEXL 0.9964 0.7110 0.0416 0.9901 624.656 630.093
IW 2.8333 0.9419 0.1752 0.0020 693.262 698.699
NH 15.222 0.0064 0.0788 0.4900 627.229 631.666

I APTE 0.2273 5.5335 0.0774 0.5121 626.765 629.012
ZTPE 0.2929 3.5944 0.0627 0.7701 626.090 628.296
ZTPL 0.3875 2.1794 0.0779 0.5048 626.928 629.134
Exp 0.1546 0.1522 0.0110 644.061 646.780
XL 0.2527 0.0885 0.3438 628.414 632.133

CEXL 0.5538 0.3426 0.0568 0.9026 637.851 643.061
IW 6.5345 1.1631 0.1166 0.1316 672.762 677.972
NH 3.4053 0.0206 0.1066 0.2056 650.897 656.107

II APTE 0.1453 4.6153 0.1062 0.2092 647.508 652.718
ZTPE 0.1994 3.7903 0.0804 0.5376 643.232 648.442
ZTPL 0.2533 1.8766 0.0865 0.4427 644.887 650.097
Exp 0.1012 0.1730 0.0050 660.041 6662.646
XL 0.1744 0.0905 0.3851 643.523 646.128
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Figure 7. Estimation plots of pdf and cdf of the fitting distributions using the second dataset.

Next, we consider the two proposed datasets employing the Bayesian estimation
under all suggested loss functions. The obtained results are presented in Table 14.

Table 14. Bayesian estimation under several loss functions for parameters of CEXL model using the
two suggested datasets.

Dataset Par SE LI GE

I θ 0.9918 0.9943 0.9934
β 0.7414 0.7436 0.7433

II θ 0.5675 0.5736 0.5746
β 0.3351 0.3372 0.3391
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Figure 8. Plots of the esf and fitted sfs for various fitting models using the first dataset.
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Figure 9. Plots of the esf and fitted sfs for various fitting models using the second dataset.

7. Conclusions

This study introduces a new lifetime model with two parameters obtained by com-
pounding the exponential and XLindley distributions. Numerous distributional and statisti-
cal properties are established. Moreover, the estimation of model parameters is considered
by applying two estimation techniques, and for simulation analysis, we perform several
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experiments for examining the potential of the proposed estimation techniques. It is demon-
strated that Bayes under the square error loss function has great efficiency in estimating
the unknown parameters among the MLE, LI, and GE methods. Finally, for validation
purposes, two real lifetime datasets are applied, and it is shown that our CEXL distribution
is the best fitting model compared among other famous competing distributions. For future
researches, we may apply several censored samples for estimating the unknown parameters
of the CEXL distribution. Also, it is better that to applied this new model environmental
and engineering fields.
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