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Abstract: In general, the extended Kalman filter (EKF) has a wide range of applications, aiming to
minimize symmetric loss function (mean square error) and improve the accuracy and efficiency of
state estimation. As the nonlinear model complexity increases, rounding errors gradually amplify,
leading to performance degradation. After multiple iterations, divergence may occur. The traditional
extended Kalman filter cannot accurately estimate the nonlinear model, and these errors still have
an impact on the accuracy. To improve the filtering performance of the extended Kalman filter
(EKF), this paper proposes a new extended Kalman filter (REKF) method that utilizes the statistical
properties of the rounding error to enhance the estimation accuracy. After establishing the state
model and measurement model, the residual term is used to replace the higher-order term in the
Taylor expansion, and the least squares method is applied to identify the residual term step by step.
Then, the iterative process of updating the extended Kalman filter is carried out. Within the Kalman
filter framework, a higher-order rounding error-based extended Kalman filter (REKF) is designed
for the joint estimation of rounding error and random variables, and the solution method for the
rounding error is considered for the multilevel approximation of the original function. Through
numerical simulations on a general nonlinear model, the higher-order rounding error-based extended
Kalman filter (REKF) achieves better estimation results than the extended Kalman filter (EKF) and
improves the filtering accuracy by utilizing the higher-order rounding error information, which also
proves the effectiveness of the proposed method.

Keywords: extended Kalman filter; nonlinear systems; round-off error; state estimation

1. Introduction

The Kalman filter (KF) is a popular state estimation algorithm used in a variety of
applications, including localization, navigation, sensor networks, and battery manage-
ment [1]. The Kalman filter estimates the state for a linear system and obtains an optimal
estimate in the presence of stochastic disturbances; therefore, the KF method is also known
as the optimal linear estimation method [2]. The KF is based on the minimum mean square
error for state estimation, and the state estimation process can be regarded as a filtering
process because the state and the observed data are usually affected by system noise [3].
The KF is a recursive estimation algorithm that iteratively obtains updated state values and
predicted values. It provides a powerful tool to deal with the state estimation problem of
linear systems [4]. However, many engineering systems cannot be described by simple
linear systems. For example, the autopilot system of a car and the target tracking system
of a drone are complex nonlinear systems. If we only use the Kalman filter (KF) for state
estimation, it cannot reach the accuracy we need. When the drone performs tracking tasks
or the car turns on the autopilot system, it may cause serious accidents. In 2023, in San
Francisco, United States, more than 700 cases of car accidents occurred involving automated
vehicles that failed to slow down, resulting in hundreds of deaths. Most of these autopilot
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incidents were the result of insufficient accuracy. For this reason, improving the accuracy of
the algorithm is a very important task. In order to solve the problem of nonlinear systems,
they need to be converted into linear systems to be solved. Usually, the extended Kalman
filter (EKF) is used to deal with nonlinear systems. The EKF algorithm is an algorithm
adapted to a variety of complex systems [5]. Currently, the extended Kalman filter (EKF)
has successfully become the most widely used state observer for nonlinear systems [6]. The
EKF is used in systems with zero-mean Gaussian process uncertainty and measurement
noise [7]. The EKF is an extension of the KF for nonlinear dynamical systems in that it
provides a more accurate estimate of the state when the modeling of the dynamical system
exactly matches the dynamics it describes. The system is linearized around the predicted
state estimates [8]. The state estimation process can also be viewed as a filtering process
since the state and the observed data are usually affected by system noise. The traditional
extended Kalman filter (EKF) has been successfully applied to many systems. The EKF uses
a Taylor expansion of the nonlinear part of the model at the estimates, and linearization
is achieved by a first-order approximation, which transforms the nonlinear problem into
a linear KF problem [9]. However, when the linearization error is large and the model
is uncertain, the performance of the EKF will be greatly reduced, and even divergence
phenomena can be observed [10,11]. This paper proposes a method to utilize the rounding
error to solve the EKF problem. In this paper, we propose a new extended Kalman filter
(EKF) method designed to enhance estimation accuracy by leveraging the statistical proper-
ties of the rounding error [12,13]. This approach involves approximating the rounding error
using a multilevel approximation of the original function and substituting the rounded
higher-order term with the residual term in the traditional extended Kalman filter. This
modification aims to address nonlinear equations more accurately and stably, making it
particularly suitable for engineering systems [14].

The first section introduces KF and EKF’s importance in applied systems, shows that
EKF falls short in certain complex systems’ requirements, and proposes a new REKF method
to improve precision. The second part mainly explains the principles and calculations of
EKF and REKF, compares their performances, and analyzes their theoretical advantages
and disadvantages in accuracy and stability. In the third part, MATLAB simulations are
conducted to verify the stability and accuracy of the REKF method. Lastly, the article
summarizes REKF’s advantages and looks toward the future.

2. Algorithms of EKF and REKF
2.1. Principle of EKF Algorithm

The mathematical structure of the extended Kalman filter (EKF) is very simple and
uses a recursive approach, where the a posteriori estimate obtained from the last compu-
tation is used as the a priori estimate for the next computation [15], and each time, the
current state estimate is computed recursively from only the measured variables from the
previous computation, which is able to give optimal estimates for the system variables,
and the second-order and higher terms are omitted from the Taylor expansion to obtain an
approximately linear model [16].

A class of systems exists where the equations of state are nonlinear and the observation
equations are linear: in this paper, the rounding error rounded off after Taylor expansion is
considered, where ξ(k) represents the rounding error of the Taylor expansion of a higher
order.

Definition 1. Consider the following time-invariant stochastic differential equation.

x(k + 1) = f (x(k)) + w(k) (1)

y(k + 1) = h(x(k + 1)) + v(k + 1) (2)

where f (·) and h(·) represent the state equation and measurement equation, respectively,
k ∈ T := {k|k = 1, 2, 3 · · · , T − 1}. The time scale is T, x(k + 1) ∈ Rn is the n dimensional
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state vector, y(k+ 1) ∈ Rm is the m dimensional measurement vector, and w(k) and v(k+ 1)
are the state modeling error noise vector and measurement error noise vector, respectively.
f (x(k)) is a nonlinear functional model of the state, with x(k), w(k), k as the common
actions. For the state, there are x(k) with order derivatives continuous up to r, and order
derivatives exist at r + 1. h(x(k + 1)) is a nonlinear functional model of the state with
x(k + 1), v(k + 1), k + 1. The vectors w ∼ N(0, Q) and v ∼ N(0, R) are independent and
obey Gaussian distributions. The Gaussian random variables denote the process noise and
the measurement noise, respectively, whose corresponding covariance matrices are Q and
R, and they also satisfy the following statistical properties:

E{w(k)} = 0, E
{

w(k)wT(k)
}
= Q(k);

E{v(k + 1)} = 0, E
{

v(k + 1)vT(k + 1)
}
= R(k + 1);

E
{

w(k)vT(k + 1)
}
= 0, E

{
w(k)vT(k + 1)

}
= 0;

E
{

w(k)xT(k)
}
= 0, E

{
v(k + 1)xT(k)

}
= 0;

(3)

The filtered estimate at time k is regarded as x̂(k|k). The nonlinear function f (x(k)) of
the state equation in Equation (1) is Taylor-expanded at x̂(k|k).

f (x(k)) = f (x̂(k|k)) +
r
∑

l=1

1
l!

∂r f (x̂(k|k))
∂xr(k)

∣∣∣
x(k)=x̂(k|k)

[x(k)− x̂(k|k)]r

+ 1
(r+1)!

∂r+1 f (x̂(k|k))
∂xr+1(k)

∣∣∣
x(k)=ξ(k)

[x(k)− x̂(k|k)]r+1
(4)

By omitting the second-order and its higher-order term, the following is obtained:

f (x(k)) ≈ f (x̂(k|k)) + ∂ f (x̂(k|k))
∂x(k)

∣∣∣∣
x(k)=x̂(k|k)

[x(k)− x̂(k|k)] (5)

In Equation (5), let:

A(k + 1|k) = ∂ f (x̂(k|k))
∂x(k)

∣∣∣∣
x(k)=x̂(k|k)

(6)

△ f (x̂(k|k)) = f (x̂(k|k))− A(k + 1|k)x̂(k|k) (7)

The equation of the state with noise x(k + 1) is as follows:

x(k + 1) ≈ A(k + 1|k)x(k) + w(k) +△ f (x̂(k|k)) (8)

The nonlinear part h(x(k + 1)) in Formula (2) is expanded by the Taylor formula in
the estimate x̂(k + 1|k).

h(x(k + 1)) = h(x̂(k + 1|k)) +
r
∑

l=1

1
l!

∂rh(x̂(k+1|k))
∂xr(k+1)

∣∣∣
x(k+1)=x̂(k+1|k)

[x(k + 1)− x̂(k + 1|k)]r

+ 1
(r+1)!

∂r+1h(x̂(k+1|k))
∂xr+1(k+1)

∣∣∣
x(k+1)=x̂(k+1|k)

[x(k + 1)− x̂(k + 1|k)]r+1
(9)

By omitting the second-order and its higher-order term, the following is obtained:

h(x(k + 1)) ≈ h(x̂(k + 1|k)) + ∂h(x̂(k + 1|k))
∂x(k + 1)

∣∣∣∣
x(k+1)=x̂(k+1|k)

[x(k + 1)− x̂(k + 1|k)] (10)

In Equation (10), let:

H(k + 1) =
∂h(x̂(k + 1|k))

∂x(k + 1)

∣∣∣∣
x(k+1)=x̂(k+1|k)

(11)

△h(x̂(k + 1|k)) = h(x̂(k + 1|k))− H(k + 1)x̂(k + 1|k) (12)
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The measurement equation can be approximately represented as:

y(k + 1) = H(k + 1)x(k + 1) + v(k + 1) +△h(x̂(k + 1|k)) (13)

where x̂(k + 1|k) is the state prediction value of the Kalman filter, y(k + 1) is the measure-
ment observation of the Kalman filter, A(k + 1|k) and H(k + 1) are the first-order Jacobi
matrices of the nonlinear model of the system where the state equation and the observation
equation are derived at x̂(k|k) and x̂(k + 1|k), and △ f (x̂(k|k)) and △h(x̂(k + 1|k)) are
known terms of the Taylor expansion of the equations of state and observation and can be
regarded as a constant term.

Extending the prediction and update process of the Kalman filter:
The prediction estimates and prediction error values for the state equations in the

model can be obtained according to Equation (8):
Projected estimates:

x̂(k + 1|k) ≈ A(k + 1|k)x̂(k|k) +△ f (x̂(k|k)) (14)

Predicted error value:

x̃(k + 1|k) ≈ A(k + 1|k)x̃(k|k) + w(k) (15)

The measurement estimates and measurement estimation errors of the measurement
equations in the model can be obtained according to Equation (13):

Measurement estimate:

ŷ(k + 1|k) ≈ H(k + 1)x̂(k + 1|k) +△h(x̂(k + 1|k)) (16)

Measurement estimation error:

ỹ(k + 1|k) ≈ H(k + 1)x̃(k + 1|k) + v(k + 1) (17)

Predicted error covariance:

Pxx(k + 1|k) ≈ A(k + 1|k)P(k|k)A(k + 1|k)T + Q(k) (18)

The filter values for the Kalman observer with time-varying gain are as follows:

x(k + 1|k + 1) ≈ x̂(k + 1|k) + K(k + 1)(ỹ(k + 1|k)) (19)

According to the orthogonality principle E
{

x̃(k + 1|k + 1)yT(k + 1)
}
= 0, the Kalman

gain K(k + 1) is solved for:

K(k + 1) ≈ Pxx(k + 1|k)H(k + 1)T(H(k + 1)Pxx(k + 1|k)H(k + 1)T + R(k + 1))
−1

(20)

The state x(k + 1) estimation error covariance was calculated:

Pxx(k + 1|k + 1) ≈ (I − K(k + 1)H(k + 1))Pxx(k + 1|k) (21)

According to the standard extended Kalman filter, the statistical properties of the
initial state x(0) are known: E{x(0)} = x̂0, E

{
(x(0)− x̂0)(x(0)− x̂0)

T
}
= P0 [17], where

x̃(k + 1|k) is the estimation error, ŷ(k + 1|k) is the prediction observation, ỹ(k + 1|k) is
the error, Pxx(k + 1|k) and Pxx(k + 1|k + 1) represent the prediction error covariance and
estimation error covariance, K(k + 1) represents the Kalman gain, and x(k + 1|k + 1)
represents the filtered value of the extended Kalman.
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2.2. Extended Kalman Filter with Residuals (REKF)

Based on the extended Kalman filter (EKF), the consideration of higher-order terms
in the Taylor expansion of the state equation can further improve the model’s accuracy
by introducing residuals to replace the higher-order terms. By applying the least squares
method step by step to identify the higher-order terms replaced by residuals, the residual
extended Kalman filter (REKF) enhances the utilization of the effects of higher-order terms
compared to the EKF. This can reflect the real dynamics of the system more accurately so
as to improve the filtering accuracy. This method is particularly suitable for systems with
strong nonlinearity and can effectively enhance the accuracy of state estimation.

2.2.1. Extended Kalman Filtering Using Residual Terms Instead of Higher-Order Terms

Assumption 1. In Equation (1), the equation of state x(k + 1) has continuity up to the order
derivative of r, and the order derivative of r + 1 exists.

The nonlinear function f (x(k)) in the model when Assumption 1 holds is given by
the x̂(k|k) Taylor expansion:

x(k + 1) = f (x̂(k|k)) +
r
∑

l=1

1
l!

∂r f (x̂(k|k))
∂xr(k)

∣∣∣
x(k)=x̂(k|k)

[x(k)− x̂(k|k)]r+

1
(r+1)!

∂r+1 f (x̂(k|k))
∂xr+1(k)

∣∣∣
x(k)=ξ(k)

[x(k)− x̂(k|k)]r+1 + w(k)
(22)

Replace the second-order term and its higher-order term with the residual term of the
equation of state:

x(k + 1) = f (x(k)) + w(k)
= △ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ(k) + w(k)

(23)

Among these, ξ(k) = ξ1(k), ξ(k) represents the second order of the Taylor expansion
and its higher-order terms.

The residual term in the equation of state is first identified by the least squares method.
The identification process is as follows:

Replace the second-order term of the Taylor expansion with a residual term in the
equation for which the Taylor expansion is performed at x̂(k|k):

x(k + 1) = f (x(k)) + w(k)
= △ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ1(k) + w(k)

(24)

Bring Equation (24) into the observation equation:

y(k + 1) = H(k + 1)x(k + 1) + v(k + 1) +△h(x̂(k + 1|k)
= H(k + 1)(△ f (x̂(k|k) + A(k + 1|k)x(k)

+ξ1(k) + w(k)) + v(k + 1) +△h(x̂(k + 1|k)
(25)

Reduce (25) to (26):

y(1)(k + 1) = H(k + 1)ξ1(k) + v(1)(k + 1) (26)

Among these, y(1)(k + 1) and v(1)(k + 1). The parameters are as follows:{
y(1)(k + 1) = y(k + 1)− H(k + 1)△ f (x̂(k|k)− H(k + 1)A(k + 1|k)x̂(k|k)−△h(x̂(k + 1|k)
v(1)(k + 1) = H(k + 1)w(k) + v(k + 1) + H(k + 1)A(k + 1|k)x̃(k|k) (27)
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Based on the least squares method, ξ1(k), ξ1(k) in (26) is identified as a Gaussian distri-
bution with ξ̂1(k|k) as the variance and Pξ

(1)(k|k) as the variance, ξ1(k) ∼ [ξ̂1(k|k), Pξ
(1)(k|k)].

The identification process is as follows:{
ξ1(k) = ξ̂1(k|k) + ξ̃1(k|k)
ξ̂1(k|k) = HT(k + 1)[H(k + 1)HT(k + 1)]−1

(y(1)(k + 1))
(28)

Judge whether to meet the system accuracy requirements: By setting the threshold
λ, determine whether the paradigm ∥ ξ̂1(k|k) ∥ < λ of the estimate of the residual term is
valid. If it is valid, then it means that the Taylor expansion only needs to be expanded to
the second order to reach the accuracy needed. If it is not valid, then the Taylor expansion
needs to continue (the specific parameters are in Appendix A).

It can be recursively proved up to order 2 and r − 1: Appendix B.

Definition 2. According to the mathematical induction method, it can be deduced to the order
of r + 1. Assuming that the system accuracy requirement is satisfied when the Taylor expansion is
carried out to the order of r + 1, the residual term ξr(k|k) is used to replace the order term of r + 1
after the Taylor expansion, ξ̂r(k|k) is the valid information extracted from ξ̃r−1(k|k), and ξ̃r−1(k|k)
is attributed to ξ̃r(k|k) after the feature extraction. Moreover, ξ(k) = ξ1(k) + · · ·+ ξr(k).

x(k + 1) = f (x(k)) + w(k)
= △ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ1(k) + · · ·+ ξr(k) + w(k)

(29)

Bring Equation (29) into the observation equation:

y(k + 1) = H(k + 1)x(k + 1) + v(k + 1) +△h(x̂(k + 1|k)
= H(k + 1)(△ f (x̂(k|k)) + A(k + 1|k)x(k)
+ξ1(k) + · · ·+ ξr(k) + w(k)) + v(k + 1) +△h(x̂(k + 1|k)

(30)

Organize (30) as:

y(r)(k + 1) = H(k + 1)ξr(k) + v(r)(k + 1) (31)

The parameter is y(r)(k + 1). The equation is:

y(r)(k + 1) = y(k + 1)− H(k + 1)△ f (x̂(k|k)− H(k + 1)A(k + 1|k)x̂(k|k)
−H(k + 1)ξ̂1(k|k)− · · · − H(k + 1)ξ̂r−1(k|k)−△h(x̂(k + 1|k) (32)

The parameter is v(r)(k + 1). The equation is:

v(r)(k + 1) = H(k + 1)A(k + 1|k)x̃(k|k) + H(k + 1)w(k) + v(k + 1) (33)

Using the least squares method, the identification parameters ξr(k), ξr(k) conform to
a Gaussian distribution, with ξ̂r(k|k) as the mean and Pξ

(r)(k|k) as the variance:

ξ̂r(k|k) = H(k + 1)T [H(k + 1)H(k + 1)T ]
−1

(y(r)(k + 1)) (34)

In nonlinear models, when the Taylor expansion is carried out up to the nth order,
the approximation is valid, satisfying the required system accuracy, and the parameter
identification for all the higher-order terms is complete, with the residual term replacing
the higher-order terms (the specific parameters are in Appendix C).

REKF algorithm flow chart (Figure 1):
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2.2.2. REKF Implementation Projections and Updates

The nonlinear observation equations and nonlinear state equations have been lin-
earized, allowing the prediction and update steps to be performed in accordance with the
Kalman filtering process. This approach streamlines and optimizes the overall filtering
procedure. The process is shown in Figure 1, and the steps are as follows:

The state and observation equations for a class of nonlinear system models are:

x(k + 1) = f (x(k)) + w(k)
= △ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ1(k) + · · ·+ ξr(k) + w(k)

(35)

(1) REKF prediction steps:

The predicted estimate of the state equation:

x̂(k + 1|k) = △ f (x̂(k|k)) + A(k + 1|k)x̂(k|k) + ξ̂1(k) + · · ·+ ξ̂r(k) (36)

The prediction error of the state equation:

x̃(k + 1|k) = A(k + 1|k)x̃(k|k) + ξ̃r(k) + w(k) (37)

In this context, ξ̃(k) represents the prediction error of the residual term in the state
equation, while ξ̂(k) denotes the predicted estimate of the residual term in the
state equation.

According to the solution formula of Kalman filtering, it can be seen that the estimation
error covariance P(k + 1|k) is as follows:

P(k + 1|k) = A(k + 1|k)P(k|k)A(k + 1|k)T

+Pξ
(r)(k + 1|k) + Q(k)

(38)

In this context, P(k|k) =
{

x̃(k|k)x̃(k|k)T
}

represents the estimated error covariance at
time k.

The predicted estimate of the measurement equation:

ŷ(k + 1|k) = H(k + 1)x̂(k + 1|k) +△h(x̂(k + 1|k)) (39)



Symmetry 2024, 16, 617 8 of 18

Predictive estimation errors in the measurement equations:

ỹ(k + 1|k) = H(k + 1)x̃(k + 1|k) + v(k + 1) (40)

(2) Update steps:

Kalman gain Kk(k + 1):

Kk(k + 1) = P(k + 1|k)H(k + 1)T(H(k + 1)P(k + 1|k)H(k + 1)T + R(k + 1))
−1

(41)

Expanded-Kalman-filtered value of the state equation at k + 1 time:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kk(k + 1)ỹ(k + 1|k) (42)

Find the estimation error covariance at the time of k + 1:

P(k + 1|k + 1) = E
{

x̃(k + 1|k + 1)(x̃(k + 1|k + 1))T
}

= (I − Kk(k + 1)H(k + 1))P(k + 1|k)
(43)

The extended Kalman prediction and update solution for the remaining substitutions
is complete.

2.3. REKF Performance Analysis

(1) Predictive stage performance analysis

During the prediction stage, the REKF state equation performs better than the EKF
in feature extraction. It utilizes a multi-level approximation method for rounding error
calculation to improve the estimation accuracy. And the error exists only in the highest-
order residual term.

In terms of performance, the smaller the error covariance, the closer the filtered value
in the system is to the true value. During the prediction stage, a (r + 1)th order xr+1(k + 1)
in the Taylor expansion is considered the true value, and the error exists only in the
highest-order residual term. Refer to Appendix D for details.

The following content focuses solely on presenting the results.
Taylor expansion to an r + 1 order of error covariance:

p(r+1)
xx(k + 1|k) = A(k + 1|k)p(k|k)A(k + 1|k)T + p(r)ζ(k|k) + Q(k) (44)

Taylor expansion to an order of error covariance:

p(r)xx(k + 1|k) = p(r+1)
xx(k + 1|k) + ξ̂(r)(k|k)ξ̂(r)(k|k)T (45)

Estimated error covariance in the Taylor expansion to the first order:

p(1)xx(k + 1|k) = p(2)xx(k + 1|k) + ξ̂(1)(k|k)ξ̂(1)(k|k)T (46)

ξ̂(1)(k|k)ξ̂(1)(k|k)T · · · ξ̂(r)(k|k)ξ̂(r)(k|k)T are all greater than or equal to 0, and
ξ̂(1)(k)ξ̂(1)(k)T is equal to 0 only if the matrix is orthogonal to ξ̂(1)(k)ξ̂(1)(k)T . Similarly,
ξ̂(r)(k|k)ξ̂(r)(k|k)T is equal to 0 only if the matrix is orthogonal to ξ̂(r)(k|k)ξ̂(r)(k|k)T .

From this, it follows that:

p(1)xx(k + 1|k) ≥ p(2)xx(k + 1|k) ≥ · · · ≥ p(r+1)
xx(k + 1|k) (47)
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Expand to the r + 1 order error covariance minimum:

p(r)xx(k + 1|k) = p(r+1)
xx(k + 1|k) + ξ̂(r)(k|k)ξ̂(r)(k|k)T

p(r−1)
xx(k + 1|k) = p(r)xx(k + 1|k) + ξ̂(r−1)(k|k)ξ̂(r−1)(k|k)T

...

...
p(2)xx(k + 1|k) = p(3)xx(k + 1|k) + ξ̂(2)(k|k)ξ̂(2) (k|k) T

p(1)xx(k + 1|k) = p(2)xx(k + 1|k) + ξ̂(1)(k|k)ξ̂(1)(k|k)T

(48)

Upon comparison, it becomes evident that the (r + 1)th order Taylor expansion ex-
hibits the smallest error covariance and the highest accuracy. In the prediction stage,
REKF extracts more information, leading to a reduced prediction error covariance matrix.
Consequently, the prediction accuracy of REKF is superior to that of the traditional EKF.

(2) Analysis of performance indicators in the update phase

Our REKF accuracy is greater than EKF in the prediction phase and in the
update phase:

p(1)xx(k + 1|k + 1)−1 = p(1)xx(k + 1|k)−1 + (HT(k + 1)R−1(k)H(k + 1));
p(2)xx(k + 1|k + 1)−1 = p(2)xx(k + 1|k)−1 + (HT(k + 1)R−1(k)H(k + 1));

...

...
p(r)xx(k + 1|k + 1)−1 = p(r)xx(k + 1|k)−1 + (HT(k + 1)R−1(k)H(k + 1));

p(r+1)
xx(k + 1|k + 1)−1 = p(r+1)

xx(k + 1|k)−1 + (HT(k + 1)R−1(k)H(k + 1));

(49)

Available by comparison:

p(1)xx(k + 1|k + 1)−1 ≤ p(2)xx(k + 1|k + 1)−1 ≤ · · · ≤ p(r+1)
xx(k + 1|k + 1)−1 (50)

By analyzing the performance of EKF and REKF, it becomes evident that the new
extended Kalman filter leverages the statistical properties of the rounding error to enhance
the estimation accuracy. A higher-order extended Kalman filter (REKF) was established
for the joint estimation of rounding errors and random variables. The method of solving
rounding errors, considering the multilevel approximation of the original function, offers
higher accuracy compared to the traditional EKF approach.

3. Simulation Experiments

Simulation experiments can be conducted to verify the enhanced performance of
the REKF compared to the EKF. These experiments can be carried out using MATLABR
2021b software.

Simulation experiment I: Consider a system where the measurement equation is linear
and the equation of state is nonlinear.

x(k + 1) =
[

x1(k + 1)
x2(k + 1)

]
=

[
5 sin x1(k + 1) + 5 cos x2(k + 1)
sin x1(k + 1) + cos x2(k + 1)

]
+ wk

[y(k + 1)] = [2x1(k + 1)] + [2x2(k + 1)] + vk+1

where x(k + 1) = [x1, x2]
T , y(k + 1) = [y1, y2]

T , wk = [w1, w2]
T , vk+1 = [v1, v2]

Twk, and
vk+1 are independent white noises obeying normal distribution in the system, wk ∼ N(0, Q)
and vk+1 ∼ N(0, R), and satisfy the conditions in Equation (3). wk and vk+1 are mutually
uncorrelated white noise, Q = diag{0.7, 1.3} and R = 1, assuming that the initial true value
of the original state model is the initial value of the original model state, x̂0 = [1, 1]T, and
the initial estimation error covariance matrix is P0 = I ∈ R2×2. The estimation of the target
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states x1 and x2 are compared to the target states using the extended Kalman filter (EKF)
with the Kalman filter with high-precision residual term substitution (REKF).

Figure 2 shows that the method proposed in this paper is more accurate.
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Table 1 shows that: In X1, the precision of the high-order REKF with residual substitu-
tion was improved by about 6.92% compared to the traditional EKF, and the precision of
the high-order REKF with residual substitution was improved by about 5.62% compared to
the first-order REKF with residual substitution.

Table 1. X1 performance comparison.

X1 Performance Enhancement Value EKF First-Order EKF

EKF root mean square error 1.2922 / /
EKF first-order root mean square error 1.2757 1.28% /

EKF higher-order root mean square error 1.2028 6.92% 5.62%

In the scenario where the state equation exhibited weak nonlinearity and the observa-
tion equation was linear, the REKF demonstrated superior performance compared to the
EKF in terms of error reduction and stability improvement.

Table 2 shows that: In X2, the precision of the high-order REKF with residual substitu-
tion was improved by about 7.28% compared to the traditional EKF, and the precision of
the high-order REKF with residual substitution was improved by about 5.95% compared to
the first-order REKF with residual substitution.
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Table 2. X2 performance comparison.

X2 Performance Enhancement Value EKF First-Order EKF

EKF root mean square error 1.2723 / /
EKF first-order root mean square error 1.2543 1.41% /

EKF higher-order root mean square error 1.1797 7.28% 5.95%

A simulation experiment was conducted using MATLAB, with the data in the table
representing the root mean square error obtained by averaging the results from 50 iterations
of the Kalman filter experiment. In scenarios where the state equation exhibited weak
nonlinearity and the measurement was linear, with relatively large random noise in the
function model, the figure clearly shows that the REKF outperformed the EKF in terms of
accuracy. Furthermore, in the case of an under-measured nonlinear model, the enhancement
of the first-order REKF with residual term replacement was smaller, while the enhancement
of the higher-order REKF with residual term replacement was larger. This observation
is also validated in the table, where it can be seen that the accuracy of the higher-order
REKF with residual term replacement was about 3% higher than that of the first order
REKF with residual term replacement. Additionally, the accuracy of the higher-order REKF
with residual term replacement was about 6% higher than that of the traditional EKF. The
REKF with residual term replacement performed better than the traditional EKF method in
practical applications.

Simulation Experiment II: Consider systems where both the measurement equation
and the equation of state are weakly nonlinear.[

x1(k + 1)
x2(k + 1)

]
=

[
x1(k)− x2(k)− 1

6 x3
1(k)−

1
6 x3

2(k) +
1

120 x5
1(k) +

1
120 x5

2(k)

1 − 1
2 x2

1(k)−
1
2 x2

2(k) +
1

24 x4
1(k) +

1
24 x4

2(k)

]
+

[
w1(k)
w2(k)

]
[y(k + 1)] =

[
x1(k + 1) + x2(k + 1) + 1

2 x2
1(k + 1)x2(k + 1) + 1

2 x1(k + 1)x2
2(k + 1) + sin x1(k + 1)

]
+ v(k + 1)

where x(k + 1) = [x1, x2]
T , y(k + 1) = [y1, y2]

T , wk = [w1, w2]
T , and vk+1 = [v1, v2]

T . wk
and vk+1 are mutually uncorrelated white noise. Q = diag{0.01, 0.01}, R = 0.5, wk, and
vk+1 are independent white noises in the system obeying normal distribution, wk ∼ N(0, Q)
and vk+1 ∼ N(0, R), and satisfy the condition in Equation (3). The initial true value of the
model is assumed to be the initial value of the original model state, x̂0 = [0.1, 0.1]T, and the
initial estimation error covariance matrix is P0 = I ∈ R2×2. Figure 3 shows that the method
proposed in this paper is more accurate.

Table 3 shows that: In X1, the precision of the high-order REKF with residual substitu-
tion was improved by about 5.06% compared to the traditional EKF, and the precision of
the high-order REKF with residual substitution was improved by about 3.07% compared to
the first-order REKF with residual substitution.

Table 3. Comparison of the performance of the EKF with the first-order EKF remainder substitution
and the higher-order EKF remainder substitution for X1.

X1 Performance Value EKF First-Order EKF

EKF root mean square error 0.2528 / /
EKF first-order root mean

square error 0.2476 2.06% /

EKF higher-order root mean
square error 0.2400 5.06% 3.07%
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Table 4 shows that: In X2, the precision of the high-order REKF with residual substitu-
tion was improved by about 6.71% compared to the traditional EKF, and the precision of
the high-order REKF with residual substitution was improved by about 4.88% compared to
the first order REKF with residual substitution.

Table 4. Comparison of the root mean square error of the first-order EKF residual replacement and
the higher-order EKF residual replacement for X2.

X2 Performance Value EKF First-Order EKF

EKF root mean square error 0.2384 / /
EKF first-order root mean

square error 0.2338 1.93% /

EKF higher-order root mean
square error 0.2224 6.71% 4.88%

MATLAB was used to carry out the simulation experiment. Since the measurement
equation and the state equation are nonlinear functions of the model, a comparison was
made between the traditional EKF and the REKF methods mentioned in this paper. The
data in the figures are the average values after running the code 50 times. The figure
showing the comparison curves of the root mean square errors shows that the residual term
increased the accuracy of the traditional EKF method by about 2% compared to the first-
order REKF method. Additionally, the higher-order residual term improved the accuracy
by about 6% compared to the first-order REKF method and was more accurate than the
traditional EKF method. In order to improve the accuracy, the higher-order residual term
should be used instead of the extended Kalman filter (REKF). REKF uses Taylor expansion
to round off higher-order terms in the model and extract higher-order items of information,
which results in better filtering performance compared to the EKF.
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4. Conclusions

In this paper, we propose and design an advanced version of the extended Kalman
filter (REKF) that specifically accounts for the effects of higher-order terms. Through a series
of detailed experiments, we demonstrated that in dealing with nonlinear Gaussian systems,
the estimation accuracy of the REKF significantly surpassed that of the traditional extended
Kalman filter (EKF). We discovered that the REKF, which includes higher-order terms,
not only has greater accuracy but also exhibits higher stability under various conditions.
However, it should be noted that our research mainly focuses on scenarios where the state
equation is nonlinear. When the measurement equation is also nonlinear, rounding errors
are introduced. These rounding errors may have a correlation between the equation of state
and the measurement equation. In the error covariance, the product term of the rounding
errors of the equation of state and the equation of observation will appear. We have not
found an effective solution in our current research. In future work, we plan to delve deeper
into and resolve this issue to further optimize and improve the performance of the REKF.
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Appendix A

Equation of state with a residual term:

x(k + 1) = △ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ1(k) + w(k) (A1)

Replace the second-order term of the Taylor expansion with a residual term in the
equation for which the Taylor expansion is performed at x̂(k|k):

x̂(k + 1|k) = △ f (x̂(k|k)) + A(k + 1|k)x̂(k|k) + ξ̂1(k|k) (A2)

x̃(k + 1|k) = A(k + 1|k)x̃(k|k) + ξ̃1(k|k) + w(k) (A3)

Bring Equation (A1) into the observation equation:

y(k + 1) = H(k + 1)x(k + 1) + v(k + 1) +△h(x̂(k + 1|k)
= H(k + 1)(△ f (x̂(k|k) + A(k + 1|k)x(k)

+ξ1(k) + w(k)) + v(k + 1) +△h(x̂(k + 1|k)
(A4)

Reduce (A4) to (A5):

y(1)(k + 1) = H(k + 1)ξ1(k) + v(1)(k + 1) (A5)

where y(1)(k + 1) and v(1)(k + 1). The parameters are as follows:{
y(1)(k + 1) = y(k + 1)− H(k + 1)△ f (x̂(k|k)− H(k + 1)A(k + 1|k)x̂(k|k)−△h(x̂(k + 1|k)
v(1)(k + 1) = H(k + 1)w(k) + v(k + 1) + H(k + 1)A(k + 1|k)x̃(k|k) (A6)
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v(1)(k + 1) obeys a normal distribution with a mean of 0 and a variance of R(1)(k + 1):

R(1)(k + 1) = E
{

v(1)(k + 1)v(1)(k + 1)T
}

= H(k + 1)A(k + 1|k)pxx
(1)(k|k)A(k + 1|k)T H(k + 1)T

+H(k + 1)Q(k)H(k + 1)T + R(k + 1)

(A7)

where pxx
(1)(k|k) = E

{
x̃(k|k)x̃(k|k)T

}
.

Based on the least squares method, ξ1(k) is identified as a Gaussian distribution in (A5),
with ξ̂1(k|k) as the variance and Pξ

(1)(k|k) as the variance, ξ1(k) ∼ [ξ̂1(k|k), Pξ
(1)(k|k)].

The identification process is as follows:{
ξ1(k) = ξ̂1(k|k) + ξ̃1(k|k)
ξ̂1(k|k) = HT(k + 1)[H(k + 1)HT(k + 1)]−1

(y(1)(k + 1))
(A8)

When m > n: pξ
(1)(k + 1|k) = [HT(k + 1)R(1)(k + 1)−1H(k + 1)]

−1
.

When m < n:
pξ

(1)(k+1|k) = HT(k+1)[H(k + 1)HT(k + 1)]−1R(1)(k+1) [H(k + 1)HT(k + 1)]−1HT

(k + 1) .
When m = n: pξ

(1)(k + 1|k). Pick one of these to apply.

Appendix B

Assuming that the Taylor expansion to the second order does not meet the require-
ments, perform Taylor expansion to the third order, and replace the third-order term and
its higher-order terms with the residual term ξ2(k). ξ̂2(k|k) is the effective information ex-
tracted from ξ̃1(k|k), and after feature extraction, ξ̃1(k|k) is attributed to ξ̃2(k|k). Moreover,
ξ(k) = ξ1(k) + ξ2(k).

x(k + 1) = f (x(k)) + w(k)
= △ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ1(k) + ξ2(k) + w(k)

(A9)

The prediction estimates and prediction errors for the Taylor expansion of the nonlinear
function f (x(k)) at x̂(k|k) are as follows:

x̂(k + 1|k) = △ f (x̂(k|k)) + A(k + 1|k)x̂(k|k) + ξ̂1(k|k) + ξ̂2(k|k) (A10)

x̃(k + 1|k) = A(k + 1|k)x̃(k|k) + ξ̃2(k|k) + w(k) (A11)

y(k + 1) = H(k + 1)(△ f (x̂(k|k)) + A(k + 1|k)x(k)
+ξ1(k) + ξ2(k) + w(k)) + v(k + 1) +△h(x̂(k + 1|k)) (A12)

Simplify and organize (A12) as:

y(2)(k + 1) = H(k + 1)ξ2(k) + v(2)(k + 1) (A13)

The parameter is y(2)(k + 1). The equation is as follows:

y(2)(k + 1) = y(k + 1)− H(k + 1)△ f (x̂(k|k)
−H(k + 1)A(k + 1|k)x̂(k|k)− H(k + 1)ξ̂1(k|k)−△h(x̂(k + 1|k) (A14)

The parameter is v(2)(k + 1). The equation is as follows:

v(2)(k + 1) = H(k + 1)A(k + 1|k)x̃(k|k)
+H(k + 1)w(k) + v(k + 1)

(A15)
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v(2)(k + 1) obeys a normal distribution with a mean of 0 and a variance of R(2)(k + 1):

R(2)(k + 1) = E
{

v(2)(k + 1)v(2)(k + 1)T
}

= H(k + 1)A(k + 1|k)pxx
(1)(k|k)A (k + 1|k) T H(k + 1)T

+H(k + 1)Q(k)H(k + 1)T + R(k + 1)

(A16)

Using the least squares method, identify the parameters ξ2(k) and ξ2(k) in (A13) as a
normal distribution, with ξ̂2(k|k) as the mean and Pξ

(2)(k|k) as the variance:

ξ̂2(k|k) = H(k + 1)T [H(k + 1)H(k + 1)T ]
−1

(y(2)(k + 1)) (A17)

When m > n: pξ
(2)(k + 1|k) = [HT(k + 1)R(2)(k + 1)−1H(k + 1)]

−1
.

When m < n:
pξ

(2)(k + 1|k) = HT(k + 1)[H(k + 1)HT(k + 1)]−1R(2)(k + 1)
[H(k + 1)HT(k + 1)]−1HT(k + 1)

When m = n: pξ
(2)(k + 1|k). Pick one of these to apply.

Judge whether it meets the system accuracy requirement: By setting a threshold λ,
determine whether the paradigm ∥ ξ̂2(k|k) ∥ < λ of the estimate of the residual term is
valid. If it is valid, then it means there is no need to expand to a higher order. If it is not
valid, then Taylor’s expansion needs to be continued.

Assuming that the Taylor expansion to the order of r − 1 is still not enough to meet
the requirements, expand the Taylor expansion to the order of r, and use the residual term
ξr−1(k|k) to replace the order term of r and its higher-order terms after the Taylor expan-
sion. ξ̂r−1(k|k) is the valid information extracted from ξ̃r−2(k|k), and after the extraction,
ξ̃r−2(k|k) is attributed to ξ̃r−1(k|k). Moreover, ξ(k) = ξ1(k) + · · ·+ ξr−1(k).

x(k + 1) = f (x(k)) + w(k)
= △ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ1(k) + · · ·+ ξr−1(k) + w(k)

(A18)

The estimated value x̂(k|k) and the error value x̃(k|k) of the Taylor expansion of the
nonlinear function f (x(k)) at x̂(k|k) are as follows:

x̂(k + 1|k) = △ f (x̂(k|k)) + A(k + 1|k)x̂(k|k) + ξ̂1(k|k) + · · ·+ ξ̂r−1(k|k) (A19)

x̃(k + 1|k) = A(k + 1|k)x̃(k|k) + ξ̃r−1(k|k) + w(k) (A20)

Bring Equation (A18) into the observation equation:

y(k + 1) = H(k + 1)(△ f (x̂(k|k)) + A(k + 1|k)x(k)
+ξ1(k) + · · ·+ ξr−1(k) + w(k)) + v(k + 1) +△h(x̂(k + 1|k)) (A21)

Simplify and organize (A21) as:

y(r−1)(k + 1) = H(k + 1)ξr−1(k) + v(r−1)(k + 1) (A22)

The parameter is y(r−1)(k + 1). The equation is as follows:

y(r−1)(k + 1) = y(k + 1)− H(k + 1)△ f (x̂(k|k)− H(k + 1)A(k + 1|k)x̂(k|k)
−H(k + 1)ξ̂1(k|k)− H(k + 1)ξ̂2(k|k)− · · · − H(k + 1)ξ̂r−2(k|k)−△h(x̂(k + 1|k)) (A23)

The parameter is v(r−1)(k + 1). The equation is as follows:

v(r−1)(k + 1) = H(k + 1|k)A(k + 1)x̃(k|k) + H(k + 1)w(k) + v(k + 1) (A24)
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R(r−1)(k + 1) = E
{

v(r−1)(k + 1)v(r−1)(k + 1)T
}

= H(k + 1)A(k + 1|k)pxx
(1) (k|k) A (k + 1|k) T H(k + 1)T

+H(k + 1)Q(k)H(k + 1)T + R(k + 1)

(A25)

Using the least squares method, the parameters ξr−1(k) and ξr−1(k) are identified to
be normally distributed, with ξ̂r−1(k|k) as the mean and Pξ

(r−1)(k|k) as the variance:

ξ̂r−1(k|k) = H(k + 1)T [H(k + 1)H(k + 1)T ]
−1

(y(r−1)(k + 1)) (A26)

pξ
(r−1)(k + 1|k) =

{
[HT(k + 1)R(r−1)(k + 1)−1 H(k + 1)]

−1
m > n

HT(k + 1)[H(k + 1)HT(k + 1)]−1R(r−1)(k + 1)[H(k + 1)HT(k + 1)]−1 HT(k + 1) m < n

When m = n, pξ
(r−1)(k + 1|k); either one of these applies.

Determine whether the system accuracy requirement is met: After the Taylor expan-
sion has reached the order of r, continue to determine whether ∥ ξ̂r−1(k|k) ∥ < λ is valid. If
it is valid, then there is no need to expand to higher orders; if not, then the Taylor expansion
needs to be continued.

Appendix C

Equation of state with a residual term:

x(k + 1) = f (x(k)) + w(k)
= △ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ1(k) + · · ·+ ξr(k) + w(k)

(A27)

The prediction estimates x̂(k + 1|k) and prediction errors x̃(k + 1|k) for the Taylor
expansion of the nonlinear function f (x(k)) at x̂(k|k) are given below:

x̂(k + 1|k) = △ f (x̂(k|k)) + A(k + 1|k)x̂(k|k) + ξ̂1(k|k) + · · ·+ ξ̂r(k|k) (A28)

x̃(k + 1|k) = A(k + 1|k)x̃(k|k) + ξ̃r(k|k) + w(k) (A29)

Bring Equation (A27) into the observation equation:

y(k + 1) = H(k + 1)x(k + 1) + v(k + 1) +△h(x̂(k + 1|k)
= H(k + 1)(△ f (x̂(k|k)) + A(k + 1|k)x(k)
+ξ1(k) + · · ·+ ξr(k) + w(k)) + v(k + 1) +△h(x̂(k + 1|k)

(A30)

Organize (A30) as:

y(r)(k + 1) = H(k + 1)ξr(k) + v(r)(k + 1) (A31)

The parameter is y(r)(k + 1). The equation is:

y(r)(k + 1) = y(k + 1)− H(k + 1)△ f (x̂(k|k)− H(k + 1)A(k + 1|k)x̂(k|k)
−H(k + 1)ξ̂1(k|k)− · · · − H(k + 1)ξ̂r−1(k|k)−△h(x̂(k + 1|k) (A32)

The parameter is v(r)(k + 1). The equation is:

v(r)(k + 1) = H(k + 1)A(k + 1|k)x̃(k|k) + H(k + 1)w(k) + v(k + 1) (A33)

R(r)(k + 1) = E
{

v(r)(k + 1)v(r)(k + 1)T
}

= H(k + 1)A(k + 1|k)pxx
(1)(k|k)A (k + 1|k) T H(k + 1)T

+H(k + 1)Q(k)H(k + 1)T + R(k + 1)

(A34)
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Using the least squares method, the identification parameters ξr(k) and ξr(k) conform
to a Gaussian distribution, with ξ̂r(k|k) as the mean and Pξ

(r)(k|k) as the variance:

ξ̂r(k|k) = H(k + 1)T [H(k + 1)H(k + 1)T ]
−1

(y(r)(k + 1)) (A35)

When m > n: pξ
(r)(k + 1|k) = [HT(k + 1)R(r)(k + 1)−1H(k + 1)]

−1

Whenm<n: pξ
(r)(k+1|k) = HT(k+1)[H(k+1)HT(k+1)]−1R(r)(k+1)[H(k+1)HT(k+1)]−1

HT(k + 1)
When m = n: pξ

(r)(k + 1|k). Pick one of these to apply.

Appendix D

From the error covariance analysis, in the prediction stage, take the remainder term
instead of the r + 1 order of the Taylor expansion as the closest to the true value. The
predicted and error values are as follows, where xr+1(k + 1) represents the true value,
x̂r+1(k + 1|k) represents the forecast estimate, x̃r+1(k + 1|k) represents the forecast error,
and the error exists only in the highest-order residual term:

xr+1(k + 1) = ∆ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ(1)(k) + · · ·+ ξ(r)(k) + w(k)
x̂r+1(k + 1|k) = ∆ f (x̂(k|k)) + A(k + 1|k)x̂(k|k) + ξ̂(1)(k|k) + · · ·+ ξ̂(r)(k|k)
x̃r+1(k + 1|k) = A(k + 1|k)x̃(k|k) + ξ̃(r)(k|k) + w(k)

(A36)

Taylor expansion to r + 1 order of error covariance:

p(r+1)
xx(k + 1|k) = E

{
x̃r+1(k + 1|k)x̃T

r+1(k + 1|k)
}

= A(k + 1|k)p(k|k)A (k + 1|k) T + p(r)ζ(k|k) + Q(k)
(A37)

Predicted and error values for the Taylor expansion to the r order: replace the remain-
der term with the Taylor expansion to the r + 1 order as the closest true value, and calculate
the error for the last remainder term only.

xr(k + 1) = ∆ f (x̂(k|k)) + A(k + 1|k)x(k) + ξ(1)(k) + · · ·+ ξ(r−1)(k) + w(k)
x̂r(k + 1|k) = ∆ f (x̂(k|k)) + A(k + 1|k)x̂(k|k) + ξ̂(1)(k|k) + · · ·+ ξ̂(r−1)(k|k)
x̃r(k + 1|k) = xr(k + 1)− x̂r(k + 1|k)

≈ xr+1(k + 1)− x̂r(k + 1|k)
= A(k + 1|k)x̃(k|k) + ξ̃(r)(k|k) + ξ̂(r)(k|k) + w(k)

(A38)

Taylor expansion to order of error covariance:

p(r)xx(k + 1|k) = E
{

x̃r(k + 1|k)x̃T
r (k + 1|k)

}
= A(k + 1|k)p(k|k)A (k + 1|k) T + p(r)ζ(k|k)
+ξ̂(r)(k|k)ξ̂(r) (k|k) T + Q(k)

= p(r+1)
xx(k + 1|k) + ξ̂(r)(k|k)ξ̂(r) (k|k) T ;

(A39)

The predicted and error values for the Taylor expansion to the first order can be
obtained by recursion:

x1(k + 1) = ∆ f (x̂(k|k)) + A(k + 1|k)x(k) + w(k)
x̂1(k + 1|k) = ∆ f (x̂(k|k)) + A(k + 1|k)x̂(k|k) (A40)
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Estimated error covariance in the Taylor expansion to the first order:

p(1)xx(k + 1|k) = E
{

x̃1(k + 1|k)x̃1(k + 1|k)T
}

= A(k + 1|k)p(k|k)A (k + 1|k) T + p(r)ζ(k|k)
+ξ̂(1)(k|k)ξ̂(1)(k|k)T + · · ·+ ξ̂(r)(k|k)ξ̂(r)(k|k)T + Q(k)

= p(2)xx(k + 1|k) + ξ̂(1)(k|k)ξ̂(1)(k|k)T

(A41)
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