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Abstract: This study formulates a multi-objective, multi-item solid transportation issue with param-
eters that are neutrosophic Z-number fuzzy variables such as transportation costs, supplies, and
demands. This work covers two scenarios where uncertainty in the problem can arise: the fuzzy solid
transportation problem and the interval solid transportation problem. The first scenario arises when
we represent data problems as intervals instead of exact values, while the second scenario arises when
the information is not entirely clear. We address both models when the uncertainty alone impacts the
constraint set. In order to find a solution for the interval case, we generate an additional problem.
Since this auxiliary problem is typical of solid transportation, we can resolve it using the effective
techniques currently in use. In the fuzzy scenario, a parametric method is used to discover a fuzzy
solution to the earlier issue. Parametric analysis identifies that the best parameterized approaches to
complementary problems are characterized by the application of parametric analysis. We present a
suggested algorithm for determining the stability set. Finally, we provide a numerical example and
sensitivity analysis for the transportation problem, which is both symmetrical and asymmetrical.

Keywords: optimization; neutrosophics set; Z-numbers; transportation problem; optimal solution

1. Introduction

The transportation problem (TP) was first stated by Hitchcock [1] and later by Balinski [2]
as a linear programming problem (LPP). It is among operations research’s most significant and
useful application-based fields. The TP’s goal is to reduce the cost of distributing goods from
multiple sources or origins to multiple destinations. It is a specific kind of linear programming
problem. The standard simplex method is unsuitable for handling transportation-related prob-
lems due to its distinctive framework. These issues call for a unique approach to resolution. A
transportation issue first manifests itself at the point of shipment dispatch. A transportation
issue originates at the point of conveyance of shipments. The price of moving a single unit
of the shipment from its origin to its destination is known as the unit transportation cost [3].
We can divide transportation challenges into two categories: balanced and unbalanced. As
is common knowledge, a transportation problem is a specific kind of linear programming
problem (LPP) in which the objective is to minimize the overall cost of transportation by
moving products from a set of origins to a set of destinations depending on the availability and
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demand of the sources and destinations. The transportation problem is considered balanced
when the supply and demand are equal. An unbalanced TP is one where demand and supply
are not equal. Depending on the situation, we introduce a dummy row or dummy column to
ensure balance in this type of problem. Subsequently, we can handle the issue in a manner
similar to that of a balanced problem.

If we describe the TPs as conventional LPPs, we can use the well-known simplex
approach to solve them. There are multiple approaches to identifying a basic, feasible
solution for the transportation issue. These techniques include Vogel’s approximation
approach, row minima, column minima, north-west corner, and matrix minima. In addition,
there are other evolutionary methods available to address the transportation issue. An
enhanced Vogel’s approximation method for TPs was presented by Korukoglu and Balli [4].
It has long been believed that the decision-maker in traditional TPs is confident in the
exact figures of the product’s availability, demand, and transportation costs. However, the
fluctuating economic landscape’s instability makes it impossible to identify or address all
aspects of the transportation problem. Therefore, TP estimates are the product of imprecise
information and uncertainty. Due to economic uncertainties brought on by changing
conditions, the decision-maker typically expects to have sufficient resources, requests, and
transportation costs to meet transportation restrictions, even though not all transportation
information is accurate or up-to-date. Since information is partial and uncertainty exists,
the TP measure is an approximation. Fuzzy sets (FS) [5–7] are a crucial tool that academics
in the domains of engineering and business have introduced to address the uncertainties
that were first proposed by Zadeh [8]. It is true that FS has been defined as ambiguous and
capable of handling hesitancy when it comes to real-world issues [9,10].

Atanassov [11] expanded fuzzy set to intuitionistic fuzzy set (IFS) by including a degree
of non-membership. Currently, IFS is a useful method for handling both uncertainty and
undesirables. The neutrosophic set (NS) introduces an expansion of the IFS that offers more re-
gions for handling uncertainty; this is briefly explored in [12,13]. Additionally, Wang et al. [14]
introduced the single-valued neutrosophic set, which is the NS’s extension. It has been applied
recently by a number of researchers in numerous technical and management sectors [15–18].
Furthermore, the lack of a clear definition for membership and non-membership degrees results
in an inadequate representation of doubt and hesitancy in real-life situations. As a result, we ad-
mit a certain amount of additional ambiguity. Zimmermann [19] demonstrated that fuzzy linear
programming consistently yields optimal and effective solutions. A fuzzy linear programming
(LP) approach was presented by Chanas et al. [20] to address transportation issues involving
precise costs, fuzzy supply, and fuzzy demand. The concept of the ideal solution for the trans-
portation issue with fuzzy coefficients represented with the help of fuzzy numbers was put
forth by Chanas and Kuchta [21], who also created an algorithm for locating the ideal solution.
Subsequently, a number of scholars have put the transportation issues into distinct fuzzy con-
texts. Ishii and Tada [22] developed a widely known transportation problem that is frequently
described using fuzzy environments as a bipartite network that has two node-sets, i.e., sets that
include supply (or factory) and demand (or warehouse) nodes. Hashmi et al. [23] developed
and examined a multi-objective approach for the two-stage fixed charge transportation strategy
problem. Transportation is considered to occur from manufacturing facilities to distributors, and
finally from distributors to customers. We regard the capacity of distributors, client demand, and
manufacturing plant availability as fuzzy metrics. Celik, Erkan, and Emre Akyuz [24] created
Interval type-2 fuzzy sets that are used in maritime transportation to choose the right shiploader
type. Singh et al. [25] formulated a transportation problem with triangular intuitionistic fuzzy
integers as expenses. Numerous other scholars extend the TPs in other fuzzy environments in
an effort to minimize uncertainty and lower transportation costs [26–32].

The current manuscript addresses the TPs known as neutrosophic Z-numbers using
an innovative approach. Z-numbers with neutrosophic information [33,34] encompass
not only accurate values but are also exceptionally competent at capturing complex and
uncertain information; yet, the previously utilized approaches have some limits. Their dis-
tinctiveness makes them ideal for TPs. Neutrosophic Z-numbers offer a thorough measure
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of uncertainty, making it possible to analyze travel conditions in greater detail. By offering
decision-makers a greater range of options and results, this strategy improves decision
making. We are embracing neutrosophic Z-numbers to open the door to more resilient and
adaptable solutions for navigation issues in dynamic and unpredictable contexts.

1.1. Key Points of the Study

The following list includes the key points.

• This research work presents a novel approach for solving navigation problems us-
ing neutrosophic Z-numbers, which provides a unique approach to dealing with
uncertainties.

• It acknowledges many unknowns inherent in travel data, including irregular travel
patterns and changing demands, which are often overlooked by conventional methods.

• It shows a significant improvement in the ability to deal with uncertainties compared
to traditional methods, leading to efficient and reliable solutions to transportation
problems.

• We provide a practical demonstration of the proposed method by applying the de-
veloped algorithm to numerical examples, demonstrating its effectiveness in real-
world situations.

1.2. Main Contributions

In this manuscript, we use neutrosophic Z-numbers to solve transportation problems.
When it comes to transportation-related problems, such as irregular visitation patterns and
fluctuating demand, there are many unknowns. Because traditional approaches cannot
control these uncertainties to the required degree, they usually yield less-than-ideal results.
However, by adding neutrosophic Z-values to the issue-solving method, we considerably
increase the anomaly tolerance.

1. The goal of this research is to examine how neutrosophic Z-numbers (NZNs) adapt
and function in a variety of domains when faced with unpredictable situations in
transportation difficulties.

2. Explain the fundamental roles of algorithms in the context of NZNs and gain an
understanding of the underlying ideas.

3. Development of a new algorithm specifically designed for the derived set that in-
creases the efficiency of transportation problem solving.

4. Describe and analyze the algorithm in NZNs in detail, taking into account the most
important aspects to obtain relevant data.

5. Creation of MATLAB code to facilitate the implementation of the proposed framework,
providing a user-friendly tool for researchers and professionals in the field.

6. Application of the developed algorithm in mathematical models, demonstration of its
practical efficacy and potential for real-world application.

7. Comprehensive solutions to balanced and unbalanced transport problems, offering
comprehensive strategies for dealing with a variety of situations.

Motivation

Solving navigation problems using fuzzy set theory provides a powerful approach
with practical applications in real-life situations. Consider, for example, a city’s public
transport system that aims to optimize bus routes based on uncertainties such as changes
in passenger needs, heterogeneous traffic conditions, and subjective measurement methods
struggle to capture these uncertainties accurately, resulting in poor road design. But the
use of fuzzy set theory enables decision-makers to represent passenger needs and traffic
congestion as fuzzy sets, providing a more nuanced understanding of system dynamics.
This approach enables subjective preferences to be synthesized so that small changes in
passenger numbers or traffic patterns do not significantly hinder the optimization process.
In this context, leveraging fuzzy set theory enables transport authorities to design efficient
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and flexible bus routes that meet passenger needs, thus operating more efficiently and
improving overall system performance.

In 2011, Zadeh introduced a concept which significantly expedited the use of fuzzy
numbers [35]. Z-numbers’ exact method of combining ordered pairs with fuzzy numbers
allows them to evaluate the reliability and limitations of human knowledge. This novel
method improves the reliability tier representation in modern fuzzy units, which is very
helpful for making judgments about uncertainty. Z-numbers have been used extensively
and in a variety of circumstances. They are essential for uncertainty assessments, as [36],
for example, shows, especially when dealing with missing or inaccurate data. This compo-
nent’s Z-statistic, with varying degrees of confidence across multiple sources, can provide a
comprehensive understanding of modified real-world scenarios and identify which ones re-
quire filtering. The use of Z-numbers can be very useful for navigation problems, which are
highly complex and include many sources of uncertainty, such as dynamic traffic conditions,
unforeseen problems, and changing demand. But travel planners and decision-makers
can use Z-numbers to gain useful new insights into the dependence of their data inputs
and even greater insight into the strengths of their solutions of the proposed. Moreover,
the flexibility of Z-numbers goes beyond transportation and finds applications in various
areas where uncertainty is widespread, e.g., Z-numbers can help supply chain managers
implement supply chain management strategies more effectively used to account for uncer-
tainty related to timing, clients and demand forecasts. Consideration of available resources
can also contribute to optimizing patient referral strategies in health care. Z-numbers
are incredibly useful tools for decision-makers negotiating the complexity of uncertain
settings owing to their comprehensive character. Organizations can produce more robust
and flexible approaches that are better suited for real-world dynamics by embracing and
leveraging the inherent uncertainties instead of trying to eliminate them. Neutrosophic
Z-numbers have the potential to transform the formulation of decisions in several fields
and lead to more reliable and strong results in an uncertain world. This potential will
certainly grow as research in this area continues to advance.

Advantages: Numerous benefits that significantly improve modelling, analysis, and
decision-making in the field come from the use of neutrosophic Z-values in mobility
analysis. These include incompleteness, ambiguity, and uncertainty regarding the mobility
dynamic processing of measurements and information in travel data and metrics. Accurate
risk assessment and sensitivity analysis are made possible by well-captured neutrosophic Z-
values, which empower stakeholders to make informed decisions in the face of uncertainty.
Additionally, the adaptability of neutrosophic Z-numbers facilitates the incorporation
of many viewpoints and stakeholder views, promoting openness, interpretation, and
collaborative decision-making in the planning and management of transportation. Through
the promotion of research frontiers and innovation, neutrosophic Z-numbers facilitate the
development of sustainable and efficient transport solutions that address the changing
demands and obstacles of contemporary civilizations.

The remainder of the document is organised as follows: Section 2 presents some
basic definitions based on Z-numbers and the neutrosophic set. Section 3 discusses the
Crisp Transportation mathematical model with annotations. The Proposed Models in the
NZN Environment for Transportation are introduced in Section 4. Sensitivity analysis is
explained in detail in Section 6 and transportation problems are addressed with examples
in Section 5. A description of limitations is provided in Section 7. Section 8 provides
conclusions and prospective research scopes.

2. Preliminaries

We are dealing with neutrosophic Z-numbers in this research work, which are a further
extension, or hybrid form, of Z-numbers and neutrosophic numbers. Therefore, before
we begin working with neutrosophic Z-numbers, let us take a quick look at Z-numbers
and neutrosophic numbers to understand what we are working with, where our working
methods came from, and which numbers we are looking into in the future.
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Definition 1. Let us take into consideration an elementary set BY that is not empty. An FS [8]
ZY in BY is defined formally with a mapping TZY : BY → [0, 1], where DZY (⋏) is known as MD
of ⋏, i.e.,

ZY =
{
⟨⋏, TZY (⋏)⟩|⋏ ∈ BY

}
,

Definition 2. An IFS [11] AY in δ is mathematically represented as:

AY =
{〈

⋏, TY(⋏), FY(⋏)
〉
|⋏ ∈ δ

}
,

here ⋏ ∈ δ, TY(⋏) is known as MD and FY(⋏) is NMD for IFS A, where (TY(⋏), FY(⋏)) ∈
[0, 1], satisfying

0 ≤ (TY(⋏) + FY(⋏)) ≤ 1.

Definition 3. Let us take a universal set “A". Now a “KA" is a Z-number [35] that is in fact an
order pair restraining fuzzified numbers, such that it is of the following form explained in [37],

KA = [(PA, QA)(ai)]

and the set of Z-numbers can be written as,

S = [< ai, (PA, QA)(ai) > |ai ∈ A]

where “PA" is the fuzzy value while “QA" is the value of reliability measure of “P". Here ai
shows that it is arbitrary and can behave for any element of the set A. Also the numeric values
PA ∈ [0, 1] and QA ∈ [0, 1].

Definition 4. Suppose we have a universal set “A". Then “MA" is a neutrosophic number [38],
which is an ordered triple of three fuzzified numbers from the set “A", of the form given below as,

MA = [(TA, IA, FA)(ai)]

Also, “N" is the set of various neutrosophic numbers which can be shown mathematically as,

N = [< ai, (TA, IA, FA)(ai)|ai ∈ A]

For instance, the numeric values TA ∈ [0, 1], IA ∈ [0, 1] and FA ∈ [0, 1]. Where TA shows the
membership degree of truth, IA denotes the membership degree of indeterminacy and lastly FA

denotes the membership degree of falsity. Also for every ai existing in A we have the constraints for
necessary for the existence of a neutrosophic number that is

0 ≤ TA + IA + FA ≤ 3.

We now have a clear understanding of what Z-numbers and neutrosophic numbers
are, thanks to the two definitions we explored prior to this. This means that we can fully
comprehend neutrosophic Z-numbers, thus letting us inquire about what NZNs are.

Definition 5. Assume we have a universal set “A". The neutrosophic Z-number [37] “WA” is of
the form demonstrated mathematically below:

WA = [TA(PA, QA)(ai), IA(PA, QA)(ai),

FA(PA, QA)(ai)] = [(TPA , TQA)(ai), (IPA , IQA)(ai), (FPA , FQA)(ai)]

However, the set of copious neutrosophic Z-numbers “Y” can be presented as

Y = [< ai, TA(PA, QA)(ai), IA(PA, QA)(ai), FA(PA, QA)(ai)|ai ∈ A].
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Additionally, the numeric values are TPA ∈ [0, 1], TQA ∈ [0, 1], IPA ∈ [0, 1], IQA ∈ [0, 1],
FPA ∈ [0, 1] and FQA ∈ [0, 1]. Here, TA symbolizes the value of truth membership, IA denotes
the value of indeterminacy membership and FA expresses the value of falsity membership in the set
“A”. Also, PA is the fuzzified number from the set “A” and QA is the measure of reliability of PA.
Additionally, for every ai existing in A we have the following necessary conditions for the existence
of NZNs given below:

0 ≤ TPA + IPA + FPA ≤ 3 and 0 ≤ TQA + IQA + FQA ≤ 3.

Definition 6. Suppose that

WA
1 = [TA

1 (PA, QA), IA
1 (PA, QA), FA

1 (PA, QA)] = [(TPA1, TQA1), (IPA1, IQA1), (FPA1, FQA1)]

and

WA
2 = [TA

2 (PA, QA), IA
2 (PA, QA), FA

2 (PA, QA)] = [(TPA2, TQA2), (IPA2, IQA2), (FPA2, FQA2)]

be two NZNs and ϱ > 0. Then we define the relations associated with NZNs [39] as follows:

1. WA
1 ⊆ WA

2 iff
TPA1 ≤ TPA2, TQA1 ≤ TQA2, IPA1 ≥ IPA2, IQA1 ≥ IQA2, FPA1 ≥ FPA2 and FQA1 ≥ FQA2.

2. WA
1 = WA

2 iff,
WA

1 ⊆ WA
2 and WA

1 ⊇ WA
2

3. WA
1 ∪WA

2 = [(TPA1 ∨TPA2, TQA1 ∨TQA2), (IPA1 ∧ IPA2, IQA1 ∧ IQA2), (FPA1 ∧ FPA2, FQA1
∧FQA2)].

4. WA
1 ∩WA

2 = [(TPA1 ∧TPA2, TQA1 ∧TQA2), (IPA1 ∨ IPA2, IQA1 ∨ IQA2), (FPA1 ∨ FPA2, FQA1
∨FQA2)]

5. (WA
1 )C = [(FPA1, FQA1), (1 − IPA1, 1 − IQA1), (TPA1, TQA1)] (Complement of WA

1 )
6. WA

1 ⊕ WA
2 = [(TPA1 + TPA2 − TPA1TPA2, TQA1 +

TQA2 − TQA1TQA2), (IPA1 IPA2, IQA1 IQA2), (FPA1FPA2, FQA1FQA2)]

7. WA
1 ⊗WA

2 = [(TPA1TPA2, TQA1TQA2), (IPA1 + IPA2 − IPA1 IPA2, IQA1 + IQA2 − IQA1 IQA2),
(FPA1 + FPA2 − FPA1FPA2, FQA1 + FQA2 − FQA1FQA2)]

8. ϱWA
1 = [(1 − (1 − TPA1)

ϱ, 1 − (1 − TQA1)
ϱ), (IPA1

ϱ, IQA1
ϱ), (FPA1

ϱ, , FQA1
ϱ)]

9. WA
1

ϱ
= [(TPA1

ϱ, TQA1
ϱ),

(1 − (1 − IPA1)
ϱ, 1 − (1 − IQA1)

ϱ), (1 − (1 − FPA1)
ϱ, 1 − (1 − FQA1)

ϱ)]

Definition 7. For the comparison of NZNs,

WA
i = [TA

i (PA, QA), IA
i (PA, QA), FA

i (PA, QA)] = [(TPAi, TQAi), (IPAi, IQAi), (FPAi, FQAi)]

we introduce the score function as

L(WA
i ) =

2 + TPAiTQAi − IPAi IQAi − FPAiFQAi

3

for L(WA
i ) ∈ [0, 1]. Therefore, we can say that if L(WA

1 ) ≤ L(WA
2 ), then there is the order WA

1 ≤ WA
2 .

3. Existing Model in Crisp Transportation

Let there be O sources and G destinations. In these transportation problems, our
goal is to minimize the cost of fulfilling the demands of various destinations (like markets,
shops, distribution centers, etc.) from multiple origins/sources (like powerplants, factories,
farms, etc.) in order to maintain financial benefits for the sources. There is a limited supply
(maximum quantity that can be produced) of each source while there is a demand (mini-
mum quantity that is needed to be transported to it) to be satisfied of each destination. But
the point is that there are some assumptions for the demand and supply of product that all
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the restrictions should be crisp. Here

O How many sources are there?
G How many destinations are there?
i The index of origin for all O.
j The index of destination for all G.
qij The quantity of product that we have to transport from the point of origin to the
destination.
TN

ij The cost in neutrosophic Z-numbers per unit quantity that we will carry from the ith
origin to the jth destination.
Tij The cost per unit quantity when it is expressed in the form of crisp numbers.
mij The quantity which is available for supply from each source in crisp environment.
mN

ij The quantity which is available for supply from each source in NZN environment.
nij The quantity which is to be demanded from each destination in crisp environment.
nN

ij The quantity which is to be demanded from each destination in NZN environment.

Then, the transportation problem in crisp environment is as follows:

Min =
O

∑
i=0

G

∑
j=0

qij.Tij

Subject to
G

∑
j=0

qij = mi = Supply, here, i = 1, 2, . . . ,O

O

∑
i=0

qij = nj = Demand, here, j = 1, 2, . . . ,G

qij ≥ 0 ∀ i, j.

4. Proposed Models in NZN Environment for Transportation

In this section, if we interchange the parameter Ti j into neutrosophic Z-number (NZN)
parameters Ti jN , then the updated model that we obtain is called Type I neutrosophic
Z-number transportation problem (T1 NZNTP) and its mathematical interpretation is
as follows:

Min =
O

∑
i=0

G

∑
j=0

qij.TN
ij

Subject to
G

∑
j=0

qij = mi = Supply, here, i = 1, 2, . . . ,O

O

∑
i=0

qij = nj = Demand, here, j = 1, 2, . . . ,G

qij ≥ 0 ∀ i, j.

4.1. Main Algorithm

Step 1 To begin solving the NZN transportation issue, select any model.
In the transportation problem of Type 1 NZN, we have the cost value of the trans-
portation as the neutrosophic Z-numbers while supply and demands are in crisp
numbers. In this case, we will apply the score function to find the score value of each
neutrosophic Z-number given in the problem either in the form of transportation cost,
supply or demand.

Step 2 In this step, we will check whether the transportation problem is balanced or not.
For this, we have to show that ∑ ai = ∑ bj
i.e., demand = supply.
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If the transportation is unbalanced, then we have to add a dummy row or column to
balance the transportation problem.

Step 3 We are going to use Algorithm 1 to find the feasible solution of the given transporta-
tion problem.

Step 4 Write a clear and concise formulation of the transportation issue.

Step 5 For the goal function, replace all xij to obtain the transit cost.
End.

4.2. Algorithm 1

Step I We will use the table values from the first phase of the main algorithm in this stage.

Step II In this step, we will find the difference between the least and next to the least
transportation cost and show it in a new column and row as penalty of that column
or row.

Step III Find the maximum penalty and allocate the appropriate row or column of the
maximum penalty to the cell with the lowest transportation cost.

Step IV May the highest penalty be the same for
Case 1: If there are multiple rows, choose the top row;
Case 2: If there are many columns, choose the column on the left.
Repeat steps III and IV until there is no supply left to fulfill and no demand left to satisfy.

The MATLAB code for the problem is given in Figure 1.

Figure 1. MATLAB code for transportation problem in NZNs.
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5. Transportation Problems

Any nation’s economic development is heavily dependent on the movement of prod-
ucts. There are many obstacles that the transportation industry must overcome to prevent
the efficient and economical transfer of commodities. This article will discuss the main
obstacles to the efficient transportation of goods in the global economy, which include non-
customs under-rate fuel, inadequate infrastructure, ineffective supply chain management,
security issues, regulatory barriers, low freight and limited load availability, and the use
of extremely old and non-compliant vehicles. Additionally, it will suggest possible ways
to deal with these issues and enhance the nation’s entire system for moving commodities.
The nation can realise the full potential of its transportation sector by addressing the issues
that negatively impact sustainable transportation, such as inadequate infrastructure, in-
effective supply chain management, security concerns, regulatory obstacles, low freight
rates, limited load availability, and the use of extremely old and non-compliant vehicles,
as illustrated in Figure 2. Here, we will discuss different types of transportation problems
in which we are going to use neutrosophic Z-numbers as transportation cost, supply, and
demand, with different types defined below to address the challenges.

Figure 2. Transportation difficulties.

5.1. Illustrative Examples

In this section, we are going to use two algorithms to find the optimal solution of the
given transportation problem. Where the neutrosophic Z-numbers are used as cost, supply
and demand for the given transportation problem.

5.2. Balanced Transportation Problem

When there is an equal supply and demand, the transportation problem is said to
be balanced.

Type 1 NZN Model

In this type, we are going to study neutrosophic Z-number as transportation cost.
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Example 1. A sugar corporation manufactures sugar in three plants in different areas in the
countryside, which is subsequently shipped to three distribution sites by means of several roads.
Each factory monthly output volume, each distribution center demand and the associated trans-
portation cost per quintal are provided in Table 1. Where the supply of the first plant is 100 tonnes,
supply of second plant is 300 tonnes and supply of third plant is 200 tonnes. Demand of first
distribution center is 400 tonnes, demand of second distribution center is 50 tonnes and demand of
third distribution center is 150 tonnes. This problem is shown graphically in Figure 3.

Also “G” denotes destination of transportation while “O” denotes origin of the transportation.
The transportation cost is given in the form of neutrosophic Z-numbers as

WA
i = [TA

i (PA, QA), IA
i (PA, QA), FA

i (PA, QA)].

Keep in mind that the PA is the neutrosophic value of the given set and QA are the components of
measures of reliability for PA. Where TA

i (PA, QA) shows the value of truth, IA
i (PA, QA) shows

the value of indeterminacy and FA
i (PA, QA) shows the value of falsity.

Figure 3. Graphical Representation of the Transportation Problem Given in Example 1.

Table 1. Input neutrosophic Z-numbers for transportation problem.

S G1 G2 G3 Supply

O1 (0.1,0.2),(0.3,0.4),(0.5,0.6) (0.5,0.9),(0.4,0.8),(0.3,0.7) (0.9,0.2),(0.8,0.3),(0.7,0.4) 100

O2 (0.8,0.4),(0.8,0.8),(0.2,0.9) (0.1,0.9),(0.9,0.5),(0.5,0.6) (0.6,0.4),(0.4,0.2),(0.2,0.8) 300

O3 (0.8,0.5),(0.5,0.2),(0.2,0.9) (0.9,0.8),(0.8,0.1),(0.1,0.7) (0.7,0.53),(0.29,0.15),(0.6,0.4) 200

Demand 400 50 150 600

Step 1 Firstly, we will find the score value of each neutrosophic Z-number cost given in the
following Table 1 and substitute them with their score values as shown in Table 2.

Table 2. Score Values of neutrosophic Z-numbers.

S G1 G2 G3 Supply

O1 0.533 0.64 0.553 100

O2 0.5 0.4466 0.666 300

O3 0.706 0.856 0.6958 200

Demand 400 50 150 600

Step 2 In this step, we are going to check whether the transportation is balanced or not.

∑ ai = 100 + 300 + 200 = 600 (1)
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and

∑ bi = 400 + 50 + 150 = 600. (2)

Hence, we can say that the given transportation problem is a balanced transportation problem.
Table 3 shows the penalties and the very first allotment assigned in Example 1. When Tables 4–6
show the sequel allotments, Table 7 shows the complete allotment of the given input data in Table 1.

Table 3. Example 1: Initial allotment with penalties.

S S1 S2 S3 Supply Penalty

M1 0.533 0.64 0.553 100 0.02

M2 0.5 0.4466(50) 0.666 300/250 0.0534

M3 0.706 0.856 0.6958 200 0.0102

Demand 400 50/0 150 600

Penalty 0.033 0.1934 0.113

Table 4. Second allotment in Example 1 with penalties.

S G1 G2 G3 Supply Penalty

O1 0.533 0.64 0.553 100 0.02

O2 0.5(250) 0.4466(50) 0.666 300/250/0 0.166

O3 0.706 0.856 0.6958 200 0.0102

Demand 400/150 50/0 150 600

Penalty 0.033 - 0.113

Table 5. The penalties for the third allotment in Example 1.

S G1 G2 G3 Supply Penalty

O1 0.533(100) 0.64 0.553 100/0 0.02

O2 0.5(250) 0.4466(50) 0.666 300/250/0 -

O3 0.706 0.856 0.6958 200 0.0102

Demand 400/150/50 50/0 150 600

Penalty 0.173 - 0.1428

Table 6. Example 1’s fourth allotment with penalties.

S G1 G2 G3 Supply Penalty

O1 0.533(100) 0.64 0.553 100/0 -

O2 0.5(250) 0.4466(50) 0.666 300/250/0 -

O3 0.706(50) 0.856 0.6958 200/150 0.0102

Demand 400/150/50/0 50/0 150 600

Penalty 0.173 - 0.1428
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Table 7. Complete Allocation in Example 1 with Penalties.

S G1 G2 G3 Supply Penalty

O1 0.533(100) 0.64 0.553 100/0 -

O2 0.5(250) 0.4466(50) 0.666 300/250/0 -

O3 0.706(50) 0.856 0.6958(150) 200/150/0 0.0102

Demand 400/150/50/0 50/0 150/0 600

Penalty - - 0.1428

Step 3 In Vogel’s approximation method for finding the feasible solutions, we have used the
Algorithm 1 already defined above. After the complete allotments in Table 7, we obtain the feasible
solution. Therefore, the initial feasible solution of the given data in Example 1 is as follows:
(O1,G1) = a11 = 100, (O2,G1) = a21 = 250,
(O2,G2) = a22 = 50, (O3,G1) = a31 = 50,
(O3,G3) = a33 = 150
As mentioned above in the main algorithm, we can find the minimum cost of the given transportation
problem using NZNs as follows:
Min = 0.533 × 100 + 0.5 × 250 + 0.4466 × 50 + 0.706 × 50 + 0.6958 × 150 Min = 53.3 +
125 + 22.33 + 35.3 + 104.37 Min = 340.3
Now we will test whether the solution is optimal or not. For this, we will use the sensitivity analysis.

5.3. Unbalanced Transportation Problem

Here, we will discuss the cases where the transportation problem is unbalanced, i.e.,
supply ̸= demand.

Type 1 NZN Model

In this section, we will discuss the unbalanced transportation problem in which cost is
in the form of neutrosophic Z-numbers. On the other hand, demand and supply are not in
the form of neutrosophic Z-numbers.

Example 2. Pakistan steel mill has three factories which supply steel to three different sites. Each
factory’s monthly output volume, each site’s demand and the associated transportation cost per
quintal are provided in Table 8. When the supply of the first plant is 249 tonnes, the supply of the
second plant is 135 tonnes and supply of the third plant is 141 tonnes. The demand of the first
distribution centre is 200 tonnes, demand of second distribution centre is 250 tonnes and demand
of third distribution centre is 100 tonnes. This problem is shown graphically in Figure 4. Also,
“G” denotes the destination of transportation while O denotes origin of the transportation. The
transportation cost is given in the form of neutrosophic Z-numbers as

WA
i = [TA

i (PA, QA), IA
i (PA, QA), FA

i (PA, QA)].

Keep in mind that the PA are the neutrosophic value of the given set and QA are the components of
measures of reliability for PA. When TA

i (PA, QA) shows the value of truth, IA
i (PA, QA) shows the

value of indeterminacy and FA
i (PA, QA) shows the value of falsity.
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Figure 4. Graphical representation of the transportation problem given in Example 2.

Table 8. Input neutrosophic Z-numbers for unbalanced transportation problem in Example 2.

S G1 G2 G3 Supply

O1 (0.69,0.81),(0.31,0.54),(0.63,0.29) (0.71,0.19),(0.98,0.37),(0.17,0.28) (0.55,0.89),(0.71,0.35),(0.43,0.241) 249

O2 (0.43,0.21),(0.03,0.1),(0.9,0.87) (0.05,0.97),(0.7,0.143),(0.3,0.5) (0.879,0.71),(0.91,0.678),(0.61,0.93) 135

O3 (0.08,0.13),(0.24,0.35),(0.05,0.64) (0.7,0.01),(0.897,0.34),(0.87,0.05) (0.09,0.1),(0.2,0.256),(0.03,0.35) 141

Demand 200 250 100 645

Step 1 Firstly, we will find the score value of each neutrosophic Z-number cost given in Table 8
and substitute them with their score values.

Since Vogel’s transportation method is applicable for balanced transportation problems, we
have to check whether the transportation problem is balanced or unbalanced. For this,
∑ ai = 249 + 135 + 141 = 525
and
∑ bj = 200 + 250 + 100 = 550
since ∑ ai ̸= ∑ bj
So we will add a dummy row in Table 9 to balance the demand and supply and obtained the Table 10.

Table 9. Score Values of neutrosophic Z-numbers.

S G1 G2 G3 Supply

O1 0.7362 0.5749 0.7124 249

O2 0.4347 0.5994 0.4799 135

O3 0.631 0.5528 0.649 141

Demand 200 250 100

Table 10. Addition of a dummy row to balance the supply and demand.

S G1 G2 G3 Supply

O1 0.7362 0.5749 0.7124 249

O2 0.4347 0.5994 0.4799 135

O3 0.631 0.5528 0.649 141

O4 0 0 0 25

Demand 200 250 100 550
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Now we can say that the given transportation problem is a balanced transportation problem.
Table 11 shows the penalties and the very first allotment assigned in Example 2. Tables 12–15 show
the sequel allotments; Table 16 shows the complete allotment of the given input data in Table 8.

Table 11. First allocation with penalties of Example 2.

S G1 G2 G3 Supply Penalty

O1 0.7362 0.5749 0.7124 249 0.1375

O2 0.4347 0.5994 0.4799 135 0.0452

O3 0.631 0.5528 0.649 141 0.0782

O4 0 0(25) 0 25/0 0

Demand 200 250/225 100 550

Penalty 0.4347 0.5528 0.4799

Table 12. Example 2: Second allotment with penalties.

S G1 G2 G3 Supply Penalty

O1 0.7362 0.5749 0.7124 249 0.1375

O2 0.4347(135) 0.5994 0.4799 135/0 0.0452

O3 0.631 0.5528 0.649 141 0.0782

O4 0 0(25) 0 25/0 -

Demand 200/65 250/225 100 550

Penalty 0.1963 0.0221 0.1691

Table 13. Example 2’s third allotment with penalties.

S G1 G2 G3 Supply Penalty

O1 0.7362 0.5749(225) 0.7124 249/24 0.1375

O2 0.4347(135) 0.5994 0.4799 135/0 -

O3 0.631 0.5528 0.649 141 0.0782

O4 0 0(25) 0 25/0 -

Demand 200/65 250/225/0 100 550

Penalty 0.1052 0.0221 0.0634

Table 14. Example 2’s fourth allotment with penalties.

S G1 G2 G3 Supply Penalty

O1 0.7362 0.5749(225) 0.7124 249/24 0.0238

O2 0.4347(135) 0.5994 0.4799 135/0 -

O3 0.631(65) 0.5528 0.649 141/76 0.018

O4 0 0(25) 0 25/0 -

Demand 200/65/0 250/225/0 100 550

Penalty 0.1052 - 0.0634
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Table 15. Fifth allotment with Example 2 penalties.

S G1 G2 G3 Supply Penalty

O1 0.7362 0.5749(225) 0.7124(24) 249/24/0 0.7124

O2 0.4347(135) 0.5994 0.4799 135/0 -

O3 0.631(65) 0.5528 0.649 141/76 0.649

O4 0 0(25) 0 25/0 -

Demand 200/65/0 250/225/0 100/76 550

Penalty - - 0.0634

Table 16. Complete allotment with penalties of Example 2.

S G1 G2 G3 Supply Penalty

O1 0.7362 0.5749(225) 0.7124(24) 249/24/0 -

O2 0.4347(135) 0.5994 0.4799 135/0 -

O3 0.631(65) 0.5528 0.649(76) 141/76/0 0.649

O4 0 0(25) 0 25/0 -

Demand 200/65/0 250/225/0 100/76/0 550

Penalty - - 0.649

In Vogel’s approximation method for finding the feasible solutions, we have used the Algorithm
1 as defined above. After the complete allotments in Table 16, we obtain the feasible solution.
Therefore, the initial feasible solution of the given data in Example 2 is as follows:
(O1,G2) = a12 = 225, (O1,G3) = a13 = 24,
(O2,G1) = a21 = 135, (O3,G1) = a31 = 65,
(O3,G3) = a33 = 76, (O4,G2) = a42 = 25
As mentioned above in the main algorithm, we can find the minimum cost of the given transportation
problem using NZNs as follows:
Min = 0.5749× 225+ 0.7124× 24+ 0.4347× 135+ 0.631× 65+ 0.649× 76+ 0× 25 Min =
129.3525 + 17.0976 + 58.6845 + 41.015 + 49.324 + 0 Min = 295.47
So the minimum value is 295.47.

6. Sensitivity Analysis

Here, we test whether our algorithm results are optimal or not. For this purpose, we
first define the testing algorithm to test the optimality. Subsequently, we test our results for
both balanced and unbalanced problems.

6.1. Algorithm 2

Step I In the first step of algorithm, we will identify the locations where no allocation has
been made and obtain the initial feasible solution.

Step II Starting from a vacant cell to occupied cells, draw a close loop, such that only the
initial vacant cell and occupied cells are permitted locations to change direction with
90◦ angle in this closed path. Insert the (+) and (−) signs one after another at every
location, beginning with the (+) at first empty cell. Sum up the transportation costs of
every cell traced by this closed loop. The resultant value is known as net cost change.
Repeat the process for every location’s transportation cost where no allotments are
assigned.
Note: The first positive transportation cost is the only one with no allocations, after-
wards all of them which have the sign (+) or (−) are the location’s where allotments
are assigned.
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Step III If all the net cost changes are positive then the solution is optimal. Otherwise,
draw a closed loop from the vacant cell bearing the largest negative net cost change.

Step IV On this closed loop, choose the cell having (−) sign and the minimum allotted
value. Allot this value to the vacant cell and it becomes the occupied cell. Subtract
the same value from all allocations of cells traced on this path having (−) sign and
likewise add this value to the allotments of cells traced on the closed loop. From this,
we will obtain a new table containing new allotments.

Step V Repeat Steps II to IV until all the net cost changes we obtain are positive and hence
at that moment we will achieve our optimal solution.

After finding the optimal solution, repeat Steps 4 and 5 of the main algorithm to
obtain the minimum value.
End.

6.1.1. Optimality Test for Example 1

In this part, our goal is to verify that feasible solution as the optimal solution, we are
going to use Algorithm 2 and find the net cost change of each unoccupied cell.
(O1,D2) = a12 = 0.64 − 0.4466 + 0.5 − 0.533 = 0.1604
(O1,D3) = a13 = 0.553 − 0.6958 + 0.706 − 0.533 = 0.0302
(O2,D3) = a23 = 0.666 − 0.6958 + 0.706 − 0.5 = 0.1762
(O3,D2) = a32 = 0.856 − 0.706 + 0.5 − 0.4466 = 0.2034

Since all the net cost changes are positive, we can say that the solution we found is the
optimal solution of the given transportation problem. So we have a verified conclusion that
340.3 is the minimum value we can obtain from the transportation problem at hand.

6.1.2. Optimality Test for Example 2

In this particular section, we will utilize Algorithm 2 to calculate the net cost change for
every vacant cell and examine whether the feasible solution we have found is the optimal
solution or not.
(O1,D1) = a11 = 0.7362 − 0.7124 + 0.649 − 0.631 = 0.0418
(O2,D2) = a22 = 0.5994 − 0.5749 + 0.7124 − 0.649 + 0.631 − 0.4347 = 0.2842
(O2,D3) = a23 = 0.4799 − 0.4347 + 0.631 − 0.649 = 0.0272
(O3,D2) = a32 = 0.5528 − 0.5749 + 0.7124 − 0.649 = 0.0413
(O4,D1) = a41 = 0 − 0 + 0.5749 − 0.7124 + 0.649 − 0.631 = −0.1195
(O4,D3) = a43 = 0 − 0 + 0.5749 − 0.7124 = −0.1375

Since there are negative net cost changes, we can say that 295.47 is not the optimal
solution. In this case, we will change the allotments by utilizing Step IV of Algorithm 2, that
is the vacant cell having the maximum negative value is (O4,D3), so we will draw close
loop from it and further proceed accordingly obtaining a new Table 17 of new allotments.

Table 17. Altered table for optimal solution of Example 2.

S D1 D2 D3 Supply

O1 0.7362 0.5749(249) 0.7124 249

O2 0.4347(135) 0.5994 0.4799 135

O3 0.631(65) 0.5528 0.649(76) 141

O4 0 0(1) 0(24) 25

Demand 200 250 100 550

Now to check whether the solution by the allotments in Table 17 is optimal, we will
repeat the procedure according to Algorithm 2.
(O1,D1) = a11 = 0.7362 − 0.631 + 0.649 − 0 + 0 − 0.5749 = 0.1793
(O1,D3) = a13 = 0.7124 − 0 + 0 − 0.5749 = 0.1375
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(O2,D2) = a22 = 0.5994 − 0 + 0 − 0.649 + 0.631 − 0.4347 = 0.1467
(O2,D3) = a23 = 0.4799 − 0.4347 + 0.631 − 0.649 = 0.0272
(O3,D2) = a32 = 0.5528 − 0 + 0 − 0.649 = −0.0962
(O4,D1) = a41 = 0 − 0 + 0.649 − 0.631 = 0.018

We can conclude that the solution by the allotments of Table 17 is also not an optimal
solution because there are negative net cost changes. Using Step IV of Algorithm 2, we
will then alter the allotments. Specifically, we will draw a close loop from (O3,D2), the
unoccupied cell with the negative value of net cost change, and proceed accordingly to
obtain a new table of allotments.

We will now repeat the process using Algorithm 2 to see whether the preceding
solution by the allocations of Table 18 is optimal or not.
(O1,D1) = a11 = 0.7362 − 0.631 + 0.5528 − 0.5749 = 0.0831
(O1,D3) = a13 = 0.7124 − 0.5749 − 0.5528 − 0.649 = 0.0413
(O2,D2) = a22 = 0.5994 − 0.5528 + 0.631 − 0.4347 = 0.2429
(O2,D3) = a23 = 0.4799 − 0.4347 + 0.631 − 0.649 = 0.0272
(O4,D1) = a41 = 0 − 0 + 0.649 − 0.631 = 0.018
(O4,D2) = a42 = 0 − 0 + 0.649 − 0.5528 = 0.0962

Table 18. Altered table for optimal solution of Example 2 using Algorithm 2.

S D1 D2 D3 Supply

O1 0.7362 0.5749(249) 0.7124 249

O2 0.4347(135) 0.5994 0.4799 135

O3 0.631(65) 0.5528(1) 0.649(75) 141

O4 0 0 0(25) 25

Demand 200 250 100 550

Since every value is positive, we are able to determine that the solution by the allot-
ments assigned in Table 18, we encountered is the optimal one for the particular transporta-
tion problem. So to find the minimum transportation cost, we will employ Step 4 and Step
5 of main algorithm on Table 18.
Min = 0.5749 × 249 + 0.4347 × 135 + 0.631 × 65 + 0.5528 × 10.649 × 75 + 0 × 25
Min = 143.1501 + 58.6845 + 41.015 + 0.5528 + 48.675 + 0
Min = 292.0774

So the most minimum and optimal solution of the Example 2 is 292.0774. The result
obtained from our algorithm is 295.47, which is very close to the optimal solution.

7. Limitations

• Our research focuses primarily on the application of neutrosophic group theory and
Zadeh Z-numbers to navigation problems, which may limit its generalizability in
other fields.

• The numerical methods used in our study can be prone to numerical complications
when solving numerically, especially when dealing with large transport systems.
However, researchers can minimize complexities and easily obtain the solution by
using the MATLAB software.

• Although our approach provides promising results, its implementation may require
significant computational resources and expertise, placing challenges on resource-
limited personnel.

• Relying on numerical models and simulations to validate our methods may not fully
capture the complexity and nuances of real-world navigation systems.

• The efficiency of our approach may be affected by data quality and availability, as well
as by external factors such as regulatory restrictions and market trends.
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8. Conclusions

Our research presents a pioneering approach to solving navigation problems by
exploiting the power of neutrosophic Z-numbers. We demonstrated the effectiveness of
our method in increasing the accuracy of the solution and reducing the uncertainty in cases
of navigation. We examine the fuzzy transportation problem, wherein fuzzy quantities and
fuzzy transportation cost per unit at the moment must be delivered.
Further details are given below:

• The approach provides a solution for complicated optimization problems.
• Method can manage determining the best option for many suppliers and locations.
• The study demonstrates the excellent accuracy of a suggested technique called Z-

statistics.
• This strategy addresses multiple issues and uncertainty that numerical approaches for

optimal solutions neglect.
• Our results undergo testing and verification, which demonstrate the dependability of

our findings.
• By using cutting-edge rigorous verification techniques, we have ensured that the

solutions we provide are not only correct but nearly accurate, notwithstanding some
uncertainties.

• The numerical examples presented throughout verify the effectiveness of our method
and highlight its practical application.

• The use of MATLAB codes provides additional accessibility and efficiency, facilitating
greater adoption of our technique.

• To increase the reliability of our solutions and gain a better understanding of how
uncertainty affects them, more research is required to create more reliable techniques
for determining uncertainty and conducting sensitivity analyses. Work together with
stakeholders and industry partners to integrate our techniques into current logistical
processes so that quick and effective decision-making is possible. Examine how
cutting-edge technologies like blockchain and the Internet of Things (IoT) can be
combined to improve the visibility and trackability of transportation routes and to
personalize and streamline our solutions.

Author Contributions: Conceptualization, A.U.; Data curation, L.R. and I.N.C.; Formal analysis,
M.N., M.E.M.A., M.F., L.R. and I.N.C.; Funding acquisition, M.E.M.A., L.R. and I.N.C.; Investigation,
M.N.; Methodology, M.K.; Project administration, M.E.M.A.; Resources, I.N.C.; Software, M.F.;
Supervision, I.N.C.; Validation, M.F., L.R. and I.N.C.; Visualization, M.E.M.A.; Writing—original
draft, M.K. and A.U.; Writing—review and editing, M.K., M.N. and I.N.C. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to Deanship of Scientific Research at King Khalid
University for funding this work through Large Groups (Project under grant number (RGP2/32/44).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The authors extend their appreciation to Deanship of Scientific Research at
King Khalid University for funding this work through Large Groups (Project under grant number
(RGP2/32/44).

Conflicts of Interest: The authors declare that they have no conflicts of interest regarding the
publication of the research article.

References
1. Hitchcock, F.L. The distribution of a product from several sources to numerous localities. J. Math. Phys. 1941, 20, 224–230.

[CrossRef]
2. Balinski, M.L. Fixed-cost transportation problems. Nav. Res. Logist. Q. 1961, 8, 41–54. [CrossRef]
3. Ghosh, S.; Roy, S.K.; Verdegay, J.L. Fixed-charge solid transportation problem with budget constraints based on carbon emission

in neutrosophic environment. Soft Comput. 2022, 26, 11611–11625. [CrossRef]

http://doi.org/10.1002/sapm1941201224
http://dx.doi.org/10.1002/nav.3800080104
http://dx.doi.org/10.1007/s00500-022-07442-9


Symmetry 2024, 16, 615 19 of 20

4. Korukoglu, S.; Balli, S. An improved Vogel’s approximation method for the transportation problem. Math. Comput. Appl. 2011,
16, 370–381. [CrossRef]

5. Meethom, W.; Koohathongsumrit, N. A decision support system for road freight transportation route selection with new fuzzy
numbers. Foresight 2020, 22, 505–527. [CrossRef]

6. Dou, C.; Woldt, W.; Bogardi, I.; Dahab, M. Numerical solute transport simulation using fuzzy sets approach. J. Contam. Hydrol.
1997, 27, 107–126. [CrossRef]

7. Singh, A.; Das, A.; Bera, U.K.; Lee, G.M. Prediction of transportation costs using trapezoidal neutrosophic fuzzy analytic hierarchy
process and artificial neural networks. IEEE Access 2021, 9, 103497–103512. [CrossRef]

8. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
9. Shukla, A.K.; Prakash, V.; Nath, R.; Muhuri, P.K. Type-2 intuitionistic fuzzy TODIM for intelligent decision-making under

uncertainty and hesitancy. Soft Comput. 2023, 27, 13373–13390. [CrossRef]
10. Arora, H.D.; Naithani, A. A new definition for quartic fuzzy sets with hesitation grade applied to multi-criteria decision-making

problems under uncertainty. Decis. Anal. J. 2023, 7, 100239. [CrossRef]
11. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
12. Majumder, P.; Das, S.; Das, R.; Tripathy, B.C. Identification of the most significant risk factor of COVID-19 in economy using

cosine similarity measure under SVPNS-environment. Neutrosophic Sets Syst. 2021, 46, 112–127.
13. Broumi, S.; Bakali, A.; Bahnasse, A. Neutrosophic sets: An overview. Infin. Study 2018, 2, 403–434.
14. Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. Infin. Study 2010, 12, 20110.
15. Das, S.; Das, R.; Tripathy, B.C. Multi-criteria group decision making model using single-valued neutrosophic set. Infin. Study 2020,

16, 421–429. [CrossRef]
16. Ye, J.; Du, S.; Yong, R. Multi-criteria decision-making model using trigonometric aggregation operators of single-valued

neutrosophic credibility numbers. Inf. Sci. 2023, 644, 118968. [CrossRef]
17. Kamran, M.; Ismail, R.; Al-Sabri, E.H.A.; Salamat, N.; Farman, M.; Ashraf, S. An optimization strategy for MADM framework with

confidence level aggregation operators under probabilistic neutrosophic hesitant fuzzy rough environment. Symmetry 2023, 15, 578.
[CrossRef]

18. Das, R.; Mukherjee, A.; Tripathy, B.C. Application of neutrosophic similarity measures in COVID-19. Ann. Data Sci. 2022, 9, 55–70.
[CrossRef] [PubMed]

19. Zimmermann, H.J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1978, 1, 45–55.
[CrossRef]

20. Chanas, S.; Kolodziejczyk, W.; Machaj, A. A fuzzy approach to the transportation problem. Fuzzy Sets Syst. 1984, 13, 211–221.
[CrossRef]

21. Chanas, S.; Kuchta, D. A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets
Syst. 1996, 82, 299–305. [CrossRef]

22. Tada, M.; Ishii, H. An integer fuzzy transportation problem. Comput. Math. Appl. 1996, 31, 71–87. [CrossRef]
23. Hashmi, N.; Jalil, S.A.; Javaid, S. A model for two-stage fixed charge transportation problem with multiple objectives and fuzzy

linguistic preferences. Soft Comput. 2019, 23, 12401–12415. [CrossRef]
24. Celik, E.; Akyuz, E. An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation

engineering: The case of ship loader. Ocean Eng. 2018, 155, 371–381. [CrossRef]
25. Singh, S.K.; Yadav, S.P. A new approach for solving intuitionistic fuzzy transportation problem of type-2. Ann. Oper. Res. 2016,

243, 349–363. [CrossRef]
26. Giri, B.K.; Roy, S.K. Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem. Int. J. Mach. Learn.

Cybern. 2022, 13, 3089–3112. [CrossRef]
27. Arora, J. An algorithm for interval-valued fuzzy fractional transportation problem. Ski. Res. J. 2018, 8, 71–75.
28. Bharati, S.K. Transportation problem with interval-valued intuitionistic fuzzy sets: Impact of a new ranking. Prog. Artif. Intell.

2021, 10, 129–145. [CrossRef]
29. Pratihar, J.; Kumar, R.; Edalatpanah, S.A.; Dey, A. Modified Vogels approximation method for transportation problem under

uncertain environment. Complex Intell. Syst. 2021, 7, 29–40. [CrossRef]
30. Mondal, A.; Roy, S.K.; Midya, S. Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid

transportation problem. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 6975–6999. [CrossRef]
31. Bagheri, M.; Ebrahimnejad, A.; Razavyan, S.; Hosseinzadeh Lotfi, F.; Malekmohammadi, N. Fuzzy arithmetic DEA approach for

fuzzy multi-objective transportation problem. Oper. Res. 2022, 22, 1479–1509. [CrossRef]
32. Akram, M.; Shah, S.M.U.; Al-Shamiri, M.M.A.; Edalatpanah, S.A. Extended DEA method for solving multi-objective transportation

problem with Fermatean fuzzy sets. Aims Math. 2023, 8, 924–961. [CrossRef]
33. Borah, G.; Dutta, P. Aggregation operators of quadripartitioned single-valued neutrosophic Z-numbers with applications to

diverse COVID-19 scenarios. Eng. Appl. Artif. Intell. 2023, 119, 105748. [CrossRef]
34. Kamran, M.; Salamat, N.; Hameed, M.S. Sine Trigonometric Aggregation Operators with Single-Valued Neutrosophic Z-Numbers:

Application in Business Site Selection. Neutrosophic Sets Syst. 2024, 63, 18.
35. Zadeh, L.A. A note on Z-numbers. Inf. Sci. 2011, 181, 2923–2932. [CrossRef]

http://dx.doi.org/10.3390/mca16020370
http://dx.doi.org/10.1108/FS-10-2019-0090
http://dx.doi.org/10.1016/S0169-7722(96)00047-2
http://dx.doi.org/10.1109/ACCESS.2021.3098657
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1007/s00500-022-07482-1
http://dx.doi.org/10.1016/j.dajour.2023.100239
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.17270/J.LOG.2020.446
http://dx.doi.org/10.1016/j.ins.2023.118968
http://dx.doi.org/10.3390/sym15030578
http://dx.doi.org/10.1007/s40745-021-00363-8
http://www.ncbi.nlm.nih.gov/pubmed/38624746
http://dx.doi.org/10.1016/0165-0114(78)90031-3
http://dx.doi.org/10.1016/0165-0114(84)90057-5
http://dx.doi.org/10.1016/0165-0114(95)00278-2
http://dx.doi.org/10.1016/0898-1221(96)00044-2
http://dx.doi.org/10.1007/s00500-019-03782-1
http://dx.doi.org/10.1016/j.oceaneng.2018.01.039
http://dx.doi.org/10.1007/s10479-014-1724-1
http://dx.doi.org/10.1007/s13042-022-01582-y
http://dx.doi.org/10.1007/s13748-020-00228-w
http://dx.doi.org/10.1007/s40747-020-00153-4
http://dx.doi.org/10.1007/s12652-021-03554-6
http://dx.doi.org/10.1007/s12351-020-00592-4
http://dx.doi.org/10.3934/math.2023045
http://dx.doi.org/10.1016/j.engappai.2022.105748
http://dx.doi.org/10.1016/j.ins.2011.02.022


Symmetry 2024, 16, 615 20 of 20

36. Ren, Z.; Liao, H.; Liu, Y. Generalized Z-numbers with hesitant fuzzy linguistic information and its application to medicine
selection for the patients with mild symptoms of the COVID-19. Comput. Ind. Eng. 2020, 145, 106517. [CrossRef] [PubMed]

37. Xian, S.; Chai, J.; Li, T.; Huang, J. A ranking model of Z-mixture-numbers based on the ideal degree and its application in
multi-attribute decision making. Inf. Sci. 2021, 550, 145–165. [CrossRef]

38. Ye, J. Neutrosophic number linear programming method and its application under neutrosophic number environments. Soft
Comput. 2018, 22, 4639–4646. [CrossRef]

39. Du, S.; Ye, J.; Yong, R.; Zhang, F. Some aggregation operators of neutrosophic Z-numbers and their multicriteria decision making
method. Complex Intell. Syst. 2021, 7, 429–438. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cie.2020.106517
http://www.ncbi.nlm.nih.gov/pubmed/32501363
http://dx.doi.org/10.1016/j.ins.2020.10.038
http://dx.doi.org/10.1007/s00500-017-2646-z
http://dx.doi.org/10.1007/s40747-020-00204-w

	Introduction
	 Key Points of the Study
	Main Contributions

	Preliminaries
	Existing Model in Crisp Transportation
	Proposed Models in NZN Environment for Transportation
	Main Algorithm
	Algorithm 1

	Transportation Problems
	Illustrative Examples
	Balanced Transportation Problem
	Unbalanced Transportation Problem

	Sensitivity Analysis
	Algorithm 2
	Optimality Test for Example 1
	Optimality Test for Example 2


	Limitations
	Conclusions
	References

