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Abstract: Ozone pollution in chemical industrial parks is severe and complicated and is significantly
influenced by pollutant emissions and meteorological parameters. In this study, we innovatively
investigated the formation rules of ozone by using observation-based analyses and a gradient-
boosting decision tree (GBDT) model, focusing on a typical chemical industrial park located in the
Yangtze River Delta of China. The results revealed that ozone concentration was positively correlated
with temperature while negatively correlated with NO2 concentration and relative humidity (RH).
Ozone pollution was predominantly observed from April to October (M4–10). The optimized GBDT
model was subsequently utilized to establish a specific and quantifiable relationship between each
single dominant impact factor (RH, NO2, temperature, and PM2.5) and ozone within a complex and
uncertain multi-factor context during M4–10. Detailed discussions were conducted on the reaction
rate of ozone-related to different levels of RH and temperature. The accumulation of ozone was
favored by high temperature and low RH, with the maximum ozone concentration observed at
the RH of 50% and the temperature of 35 ◦C. The NO2-O3 change curve exhibited distinct phases,
including a period of stability, gradual increase, rapid increase, and equilibrium. During the second
and third periods, the ratio of ozone production to NO2 consumption was 0.10 and 2.73, respectively.
Furthermore, there was a non-monotonic relationship between variations in ozone concentration and
PM2.5 concentration. Hence, it is imperative to implement fine control strategies in the park, such
as adopting seasonal production strategies, implementing targeted measures for controlling NOx

and active VOCs, and employing special control methods during periods of high temperature. This
study provides aid in achieving effective management of localized ozone pollution and ensuring
compliance with air quality standards.

Keywords: chemical industrial park; gradient boosting decision trees; meteorological parameters;
ozone formation; observation-based analyses

1. Introduction

As factories retreat from cities to industrial parks, centralized emissions from chemical
industrial parks greatly affect the surrounding air quality [1,2]. Due to the massive emission
of VOCs and NOx from chemical industries, ozone pollution has become one of the most
prominent problems and has caused increasing concern in human society [3–6]. High
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ozone concentrations can affect human health, plant growth, and climate change [7–9]. As
a secondary pollutant, surface ozone is generated by complex photochemical reactions of
multiple precursors under solar radiation [10–13].

Previously, extensive research has been conducted on the ozone formation rules in
large-scale areas such as cities. However, in recent years, there has been a growing research
focus on small-scale areas, especially chemical industrial parks [14–17]. With concentrated
pollution sources, high pollutant concentrations, and complex pollutant compositions,
chemical industrial parks show more confusing ozone formation rules than urban areas.
The complicated production conditions cause ozone pollution in industrial parks, not to
mention the variable meteorological parameters [18–20]. One study found that the offshore
petrochemical industrial park is responsible for most VOC emissions in the surrounding
environment, and its impact on local ozone level is significant. Additionally, the total
amount of local ozone and its precursors were generally constant [21]. Another study has
revealed that air pollutants, especially ozone from industrial parks, will be transported to
stadiums during the 2022 Asian Games, which could significantly impact the air quality
of important activities [22]. Other researchers concentrated on sensitivity analysis [23],
pollution event analysis [24], and formation rules research [16] related to ozone. Therefore,
it is extremely important to explore ozone formation rules in chemical industrial parks.

The complex photochemical reactions of ozone lead to a highly nonlinear relationship
between ozone and its impact factors [25,26]. Observation-based research has led to some
progress in determining the ozone formation rules, which can adapt to various scenarios
and obtain relatively apparent regularity between ozone level and impact factors. A
detailed study found that high concentrations of precursors, high temperature, low relative
humidity (RH), and moderate high wind speeds (WS) were conducive to generating urban
ozone episodes in Zhengzhou [26]. The authors studied the impact of meteorological
factors on pollutants and found that temperature had the greatest effect on ozone [27].
Another interesting study revealed a strong correlation between ozone and meteorology,
with wind speed (WS) and wind direction (WD) primarily contributing to the transport and
mixing of precursors, while temperature directly influenced ozone formation [28]. Some
researchers evaluated the long-term trend of ozone level and found that the decline of
MDA8 from 2007 to 2014 was associated with CO and NOx, while the increase in ozone
level from 2015 to 2021 was linked to NOx emissions [29]. Another investigation focused on
the trend of ambient ozone level and its associations with precursor gases and meteorology
using ground and satellite observations. It concluded that reduced NO2 concentration
improved O3 air quality, but local meteorology conditions worsened it [30]. However, it is
difficult to recognize the effects of these factors without obvious rules for ozone formation
or distinguish the contribution of different impact factors based on observation analyses.

Therefore, some more complicated approaches have also been applied to reveal the
ozone formation rules, such as the Empirical Kinetics Modeling Approach (EKMA), chem-
ical transport models, and machine learning. EKMA can only reflect the relationship
between ozone and the precursors under certain initial conditions, but it cannot adapt to
changes in the nonlinear relationship caused by dynamic changes in precursors concen-
tration and meteorological parameters under realistic conditions [31]. Air quality models
require considerable data input and expensive computational costs, which limit their
applicability [32–35].

Machine learning is widely used in the field of air pollution, and it can use even
irregular data to determine internal mechanisms and obtain high prediction accuracy with
cheaper computational cost [35–37]. Several machine-learning models have been used
to estimate ozone concentrations. Some authors used linear regression and the random
forest model to fit historical data from monitoring of ozone concentrations, and the results
showed that sunlight, NO2, WS, and NO were the most important factors leading to heavy
ozone pollution [18]. A study was conducted to establish an artificial neural network
(ANN) to investigate the ozone formation rules. The findings indicated that the studied
area belonged to the NOx-sensitive regime, with sensitivity strongly affected by relative
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humidity (RH) and pressure (P) [16]. The spatiotemporal characteristics of ground-level O3
were investigated in another study using ground observations and satellite retrievals with
interpretable machine learning models, highlighting the significant influence of tempera-
ture, RH, total column O3, as well as the distributions and interactions of precursors on the
observed patterns of O3 in Zhejiang [38]. The ozone concentration prediction was success-
fully achieved by employing a deep convolutional neural network (CNN) that integrated
meteorological data and air pollution concentrations, yielding promising outcomes in an
intriguing study [39]. The estimation of O3 in Beijing was conducted using a Random Forest
model, revealing that land surface temperature and temperature at 2 m above the surface
emerged as the most influential factors while NO2 stood out as the highest influencing
factor among the air quality parameters [40]. Moreover, the gradient-boosting decision tree
(GBDT) is another popular and powerful machine learning algorithm that exhibits great
performance in interpretability, accuracy, and efficiency while learning with big data [41,42].
In addition, it also performs well for complex correlated variables with greater robustness
and generalization, which is suitable for the fitting of ozone levels influenced by multiple
factors [43,44].

Therefore, this study explored the temporal variations and observation-based correla-
tions based on ozone concentration together with those of 6 other atmospheric pollutants
and 5 meteorological parameters. Then, the GBDT model was innovatively employed
to discover the ozone formation rules for the high ozone pollution period. Furthermore,
the optimized model was utilized to establish a specific and quantifiable relationship be-
tween an individual impact factor and ozone within a complex and uncertain multi-factor
context. This work aids in realizing small-scale ozone pollution control and meeting air
quality standards.

2. Methodology
2.1. Study Area

A typical chemical industrial park [45,46] located in the southern Yangtze River Delta,
northeastern Zhejiang Province (30.61◦ N, 121.07◦ E), and adjoining Hangzhou Bay was
selected as depicted in Figure 1. It is the only outlet and foreign trade channel for northern
Zhejiang Province with a superior geographical position and convenient waterway trans-
portation. With a humid subtropical monsoon climate, this park has four distinct seasons.
In addition, 65.7% of factories in this park produce new chemical materials, which has
formed several industrial chains with competitiveness, including polycarbonate, silicone,
ethylene oxide, Purified Terephthalic Acid (PTA), and so on. Adjacently distributed in-
dustrial sources with high and intermittent levels of pollutant emission, as well as mobile
sources that serve the transportation industry that drives the production of parks, are the
main sources of pollutant emission in parks.
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2.2. Datasets

Monitoring data of atmospheric pollutants and meteorological parameters mainly
came from the automatic environmental air monitoring station placed in the park. Table 1
displayed the detailed monitoring information for all the monitoring parameters. The con-
centration of ozone was detected by ultraviolet absorption spectrophotometry with a limit
of detection of 0.05 ppb. SO2 was detected by the pulsed ultraviolet fluorescence method,
and the detection limit was 0.5 ppb. The chemiluminescence method was used to quantify
NOx (including NO and NO2) with a detection limit of 0.4 ppb. CO was detected by the gas
filter correlation analysis method with a detection limit of 0.04 ppm. Fine particle matter
(PM2.5) was analyzed by the β-ray turbidity method with a limit of detection of 4 µg·m−3.
VOCs were analyzed by gas chromatography-mass spectrometry with flame ionization
detection, and the limit of detection was 0.15 ppb. The VOCs monitored mainly involved
5 categories: alkanes (24 species), alkenes (10 species), ethyne, aromatics (14 species), and
halocarbons (21 species), as shown in Table S1. Meteorological parameters were moni-
tored by the WS500-UMB weather system, which included temperature, RH, atmospheric
pressure (P), WS, and wind direction (WD).

Table 1. The monitoring information for atmospheric pollutants and meteorological parameters.

Monitoring Parameters Detection Method
Detection

Limitation/
Precision

Data Collected Spans Temporal
Resolution

Atmospheric
pollutants

O3
absorption

spectrophotometry 0.05 ppb January
2014~December 2018 1 h

NOx chemiluminescence 0.4 ppb January
2014~December 2018 1 h

SO2 ultraviolet fluorescence 0.5 ppb January
2014~December 2018 1 h

CO gas filter correlation analysis 0.04 ppm January
2014~December 2018 1 h

PM2.5 β-ray turbidity 4 µg·m−3 January
2015~December 2018 1 h

VOCs gas chromatography-mass
spectrometry 0.15 ppb January

2018~December 2018 1 h

Meteorological
parameters

Temperature NTC negative temperature
coefficient thermistor ±0.2 ◦C January

2018~December 2018 1 h

RH Capacitive sensing ±2% RH January
2018~December 2018 1 h

P MEMS Capacitive sensing ±0.5 hPa January
2018~December 2018 1 h

WS ultrasonic wave ±0.3 m/s January
2018~December 2018 1 h

WD ultrasonic wave RMSE < 3◦

(>1.0 m/s)
January

2018~December 2018 1 h

2.3. Pearson Correlation Coefficient

The Pearson correlation coefficient is a statistical parameter that quantitatively mea-
sures the correlation between two variables [47–49]. It can be calculated as in Equation (1):

ρ(x, y) = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2∑n

i=1 (yi − y)2
(1)

where xi and yi are the values of variables x and y at i o’clock, and x and y are the average
values of the x and y variables, respectively.
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2.4. GBDT Model

The GBDT model is one of the most powerful learning algorithms based on decision
trees and solves the overfitting defect of a single decision tree to a certain extent. The
main advantage is similar to that of other models based on decision trees; these algorithms
perform well with heterogeneous features without scaling the data. The key of the GBDT
model is to optimize a cost function over function space by iteratively choosing a function
(weak hypothesis) that points in the negative gradient direction, that is, an algorithm that
uses the value of the negative gradient of the loss function in the current model as the
approximate residual in the lifting tree algorithm to fit a lifting tree and minimize the loss
function by gradually reducing the residual.

2.4.1. Algorithm

The detailed algorithm is described as follows [42,50].
First, the training data D = {(xi, yi)} (i = 1, 2,. . ., N) was built by setting the impact

factors as the independent variable dataset and ozone concentration as the dependent
variable dataset. The prediction function f (x) was simulated by the GBDT model, and the
loss function was defined as L(y, f (x)). Specifically, the GBDT model was applied based on
the following algorithm:

(1) The model was initialized with constants c to minimize the loss function as in
Equation (2):

f0(x) = argmin
c ∑N

i=1 L(yi, c) (2)

(2) For the mth regression trees, m = 1, 2, . . ., M.

(a) For the ith variable, i = 1, 2, . . ., N, the value of the negative gradient of the
loss function was calculated based on the current model fm-1(x) according to
Equation (3) and taken as the approximate value of the residual error.

rmi = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (xi)= fm−1(x)

(3)

(b) Then, a regression tree was fitted to rmi to obtain the leaf node area Rmj of the
jth leaf node in the mth tree, j = 1, 2, . . ., J.

(c) For the jth leaf node, a linear search was used to estimate the values of the leaf
node areas to minimize the loss function value, as shown in Equation (4):

cmj = argmin
c ∑xi∈Rmj

L(yi, fm−1(xi) + c) (4)

(d) The regression tree was updated as in Equation (5):

fm(x) = fm−1(x) + ∑J
j=1 cmj I(x ∈ Rmj) (5)

(3) Finally, the final regression model was obtained as in Equation (6):

∧
f (x) = fM(x) + ∑M

m=1 ∑J
j=1 cmj I(x ∈ Rmj) (6)

A grid search was used to determine the best parameters for the GBDT model. Grid
search is a method based on the exhaustive search method, and the best learning algorithm
is obtained by optimizing the parameters of the estimated function through cross-validation.
Cross-validation randomly divides the entire model-fitting dataset into k (k = 10 in this
study) mutually exclusive subsets of similar size [51]. Then, k-1 subsets are used each time
as the training set to fit the model, and the remaining subsets are used as the testing set to
make predictions. In this way, the model is trained and tested k times until every subset
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is predicted, which effectively suppresses the overfitting of the model and identifies the
best parameters.

2.4.2. Operation Framework

The implementation of this model was carried out using the Python programming
language. The model operation framework for fitting the ozone concentration data is
shown in Figure 2. The input data was preprocessed based on the hourly data, and the
input conditions were established according to different settings for feature selection and
missing value processing. The GBDT model was then trained on the preprocessed M4–10
data, with a training-to-testing set ratio of 7:3. Based on the fitting results, further work
was undertaken to develop a deeper understanding of the ozone formation rules.
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2.4.3. Preprocessing

Since the effectiveness of some features can be partially predicted and the VOC
composition is too complex, the level of conventional atmospheric pollutants (SO2, NO,
NO2, PM2.5, CO) and meteorological parameters (temperature, RH, P, WS, WD) were fixedly
selected, but VOCs were selected based on different criteria when fitting the GBDT model.
The feature selection process is effective in reducing the algorithm’s running time and
increasing the interpretability of the model. The FILTER method, which selected features
before model fitting, was used for feature selection. Classification and correlation analyses
realized feature selection with different considerations. The former is based on functional
groups to divide VOCs into 4 categories (alkanes, alkenes and ethyne, aromatics and
halocarbons) to reduce the instability caused by missing values of some VOC concentrations,
which can reflect the influence of VOC species with similar reaction mechanisms. The latter
consideration, which is based on the Pearson correlation coefficient, can determine the
impacts of VOC species with identical sources or other relationships on ozone formation
to reduce the interference of collinearity with the model. As described specifically in the
Supplementary Material in Text S1 and Figure S6, eleven VOC species were ultimately
selected for model fittings. Moreover, in case key information on VOCs was lost or the
accuracy of the model was reduced, the GBDT model was also performed without feature
selection. That is, all VOC species were selected indiscriminately. In contrast, the complexity
of the model with feature selection was largely reduced compared with the model without
feature selection.
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In addition, the missing values were processed by both deletion and interpolation.
Deleting missing values leads to a smaller training set, while interpolation may cause
distortion of some data, and a single method may cause the model to deviate from the real
situation. Hence, the results of these two processing methods were considered together in
cases of nonnegligible deviation.

Finally, the combined feature selection and missing value process was used to establish
6 input conditions for each fitting to obtain a more reasonable and reliable simulation.

2.5. Model Performance Indices

To evaluate the model performance, the coefficient of determination (R2) and the root
mean square error (RMSE) were calculated [18]. As shown in Equation (7), R2 measures the
proportion of variation in the dependent variable that can be explained by the independent
variable. At the same time, MSE represents the square of the difference between the true
value and the predicted value, as shown in Equation (8).

R2 = 1− ∑n
i=1 (

∧
f (xi)− y)2

∑n
i=1 (yi − y)2 (7)

RMSE =

√√√√∑n
i=1 (yi −

∧
f (xi))2

n
(8)

3. Results
3.1. Temporal Variation in Atmospheric Pollutants and Meteorological Parameters

The annual average concentrations for 6 conventional atmospheric pollutants were
determined from 2014 to 2018. Figure S1 in the Supplementary Materials demonstrates that
the levels of SO2, NO, NO2, and CO all met the Grade (I) National Ambient Air Quality
Standard (NAAQS) (GB3095-2012) [52], and the concentrations changed slightly in different
years. The concentration of PM2.5 decreased year by year, but it still exceeded Grade (II) of
NAAQS (GB3095-2012). More seriously, ozone concentrations have reached a high level in
recent years, which requires more attention to improving the air quality in parks.

Considering the loss of historical monitoring data of VOC concentration, this study
focused on the online monitoring data in 2018 for further analysis.

3.1.1. Conventional Atmospheric Pollutants

The temporal variations and average monthly variations in O3, SO2, NO, NO2, CO,
and PM2.5 levels in 2018 are shown in Figures S2 and S3, respectively. The annual average
ozone concentration was 73 µg·m−3, July was the month with the maximum hourly ozone
concentration of 340 µg·m−3, and June was the month with the largest monthly average
ozone concentration of 105 µg·m−3. The ozone concentrations exhibited higher values
during the period from April to October (M4–10) compared to other months. In addition,
statistical analysis showed that M4–10 was also the period with high incidences of heavy
ozone pollution with a frequency of 96.7%. The concentration of SO2 was significantly
larger in the first semi-year than in the second semi-year, with an average value of 9 µg·m−3.
The NO concentration was stable at approximately 3 µg·m−3 throughout the year and
showed little small variation. In addition, the monthly concentrations of NO2, CO, and
PM2.5 showed single valleys in June, July, and August, which were opposite those of ozone.
The average annual concentrations of NO2, CO and PM2.5 were 26 µg·m−3, 0.689 mg·m−3,
and 35 µg·m−3 in 2018, respectively.

Furthermore, the average diurnal variations in conventional atmospheric pollutants
are depicted in Figure 3. Because of photochemical reactions and the “NO titration ef-
fect” [26], the maximum ozone concentration was recorded at 13:00–14:00 in the afternoon,
while the minimum ozone concentration was recorded at night, ozone concentration fluc-
tuated more during the day than during the evening. NO2 showed the opposite change
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pattern with ozone. The concentrations of NO and NO2 reached a peak at 7:00–8:00 in
the morning, which was mainly affected by mobile source emissions during the morning
rush hours. Simultaneously, NO2 and CO shared similar variation trends, which were
opposite those of ozone. However, SO2 and PM2.5 were insensitive to diurnal changes,
which changed without clear regularity.
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3.1.2. VOCs

The variations in concentrations and composition of VOCs makes the ozone forma-
tion mechanism more complex, so more work needs to be conducted to investigate the
characteristics of VOCs [53].

Temporal variations in VOCs were investigated with four groups, including alkanes,
aromatics, halocarbons, alkenes, and ethyne, as shown in Figures 4 and S4. There were no
obvious seasonal differences in the proportions of the four groups. Overall, the proportion
of alkanes was the highest, followed by halocarbons and aromatics, and alkenes and ethyne
were least abundant. The concentrations of VOCs from each group were larger in the first
semi-year than in the second semi-year, which may be caused by the industrial production
cycle. In addition, average diurnal variations in the level of alkanes and halocarbons
were not ordered. The level of aromatics, alkenes, and ethyne varied more regularly
within a day and showed a single valley at 13:00–14:00, which was significantly affected by
photochemical reactions. In summary, the continuity and regularity of VOC concentrations
were worse than those of other conventional pollutants because of the effects of both
multiple emissions and photochemical reactions.
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3.1.3. Meteorological Parameters

Meteorological parameters can affect ozone concentration via mechanisms related to
transport, chemical production and consumption, and deposition. The temporal variations
in WS, WD, RH, temperature, and P during 2018 were plotted in Figure S5. The average
WS was 2.8 m·s−1 with the dominant WD of east and southeast. In addition, larger WS
were concentrated in July and August, while other months mainly exhibited smaller WS
of 0–4.5 m·s−1 during this year. Therefore, the pollution in the park was mainly affected
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by the eastern and southeastern oceans, as well as the western and northwestern areas. In
addition, the temperature varied from −4.3 ◦C to 36.3 ◦C with an annual mean value of
17.7 ◦C. temperature higher than 17.7 ◦C were mostly concentrated in M4–10. More precisely,
the temperature distribution in M4–10 differs significantly from that of other months. The
distribution of P was concentrated around approximately 101.31 kPa throughout the year,
with variations from 98.5 kPa to 103.5 kPa. The temporal trend for changes in P was
opposite to that of temperature, and high P always coexisted with low temperature. RH
fluctuated around 83.41% throughout the year, ranging from 21.8% to 100%.

In addition, the average diurnal variations in RH, temperature, WS, and P are also
discussed in Figure 5. The diurnal variation curves for temperature, RH, and WS presented
single peaks and single valleys. The daily peak for temperature appeared at 13:00, exhibiting
consistency with ozone levels but contrasting with those of RH. Coincidentally, WS also
showed a similar trend with a valley at 5:00 and a peak at 14:00. Because of the effects of
RH, temperature, and atmospheric motion, P showed two peaks at 9:00 and 22:00, with
a maximum value at 9:00, and two valleys at 3:00 and 15:00, with a minimum value at
15:00. In addition, the dispersion degrees of temperature, WS and P were stable over
time, while that of RH was larger in daytime than at night. Therefore, the relationship
between RH and temperature exhibited nonlinearity, potentially impacting their influence
on ozone formation.
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3.2. Observation-Based Correlation Analysis

Correlation analysis based on observation-based analyses results provide a preliminary
understanding of ozone formation rules. Based on the temporal variations in ozone level
shown in Figures 3a and S3a, the correlations of impact factors with ozone level were recog-
nized. For conventional atmospheric pollutants, NO2 and CO exhibited monthly and aver-
age diurnal variation trends opposite to those of ozone, as shown in Figures 3d,e and S3d,e.
PM2.5 presented a monthly variation opposite to that of ozone, as shown in Figure S3f. In
addition, alkenes and aromatics were separately the VOC groups that exhibited monthly
and diurnal changing trends opposite to that of ozone, as shown in Figure 4b,g. The
monthly and diurnal variations in ozone levels were consistently influenced by tempera-
ture, as depicted in Figures S5a,b and 5. Moreover, elevated temperatures were found to
promote the formation of ozone. RH exhibited a trend opposite to that of ozone within a
given day (as shown in Figure 5), and high RH inhibited ozone formation. Since reactions
among VOCs were more complicated and diverse than those of NOx, and considering the
complex emission conditions and changeable meteorological parameters in the small-scale
chemical industrial park, the correlation between O3 and VOCs was not obvious.
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In addition, heavy ozone pollution was mostly concentrated in M4–10, which accounted
for 96.71% of the annual total heavy pollution hours, which was of great significance in
exploring the formation rules of ozone pollution in this period.

3.3. Ozone Formation Rules Based on the GBDT Model
3.3.1. Model Performance

The GBDT model was performed with six input conditions. The best simulation
results corresponding to different simulations were shown in Figure 6, which showed that
the R2 value exceeded 0.85 and RMSE values were less than 0.020 for most simulations,
indicating good fits with the GBDT model for ozone concentration in the park. When
Comparing different data processing methods, it was observed that the interpolation
method outperformed the deletion method in handling missing values. Additionally, the
three feature selection methods yielded similar fitting results. Considering these findings
collectively, we selected the GBDT model trained using correlation analysis and deletion
method for further discussion due to its simplicity and precision.
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Figure 6. Comparison of the predicted ozone concentration by the GBDT model and measured ozone
concentration in M4–10. (Note: (a–c) represent the simulation results of interpolation method, while
(d–f) represent the results of deletion method. The red scatter diagram represents the simulation
results of correlation analysis method for feature selection, the green scatter diagram represents the
simulation results with functional groups method for feature selection, and the blue scatter diagram
represents the simulation results without feature selection).

The permutation importance was also used by randomly shuffling the single feature
value, which broke the relationship between the features and the target to calculate the
decrease in a model score and to confirm the feature importance. After 10 times breaking
for the feature order verification, the permutation feature importance results were obtained,
as shown in Figure 7. It is obvious that RH, temperature, NO2, and PM2.5 were the most
important factors determining ozone formation, and the orders of importance for M4–10
was RH > NO2 > temperature > PM2.5. At the same time, the meteorological parameters
(mainly RH and temperature) dominated ozone formation. The ozone pollution in the park
generally results from the chemical reaction of atmospheric pollutants, which is regulated
by meteorological factors. However, it should be noted that the main controlling factors
may vary under different conditions.
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3.3.2. Ozone Formation Rules

The influencing rules of the dominant factors (RH, temperature, NO2 and PM2.5) on
ozone formation were further considered to develop a more profound understanding.

(1) Meteorological factors (RH and temperature)

Previous results have demonstrated that meteorological factors, particularly RH and
temperature, played a dominant role in the formation of ozone pollution in industrial
parks. Therefore, this section took a step size of 1% for RH and 0.5 ◦C for temperature,
with a value range of 20–100% for RH and 5–37 ◦C for temperature to investigate the ozone
formation rules using the trained GBDT model. The value of other influencing factors was
controlled at their annual mean (prevailing WD) to eliminate their interference.

As shown in Figure 8a, the RH of 50% exhibited the most favorable conditions for
ozone accumulation. When the RH was below 50%, variations in RH did not significantly
impact ozone formation. When the RH exceeded 50%, there was a decrease in ozone
concentration by approximately 1.01 µg·m−3 and 2.69 µg·m−3 at temperatures ranging
from 5 to 20 ◦C and 25 to 37 ◦C, respectively, for every increase of 1% RH. The ozone
concentration exhibited the highest sensitivity to changes in RH at a temperature of 30 ◦C.
Figure 8b showed that higher temperature led to higher ozone concentrations. Specifically,
when the temperature was below 22 ◦C, ozone concentration exhibited lower sensitivity
to temperature at RH exceeding 90%. However, at RH around 80% and within the range
of 20–70%, every increase of 1 ◦C resulted in an elevation of ozone concentration by
approximately 1.07 µg·m−3 and 1.86 µg·m−3, respectively. However, at temperatures
above 24 ◦C, the ozone concentration exhibited an increase of 3.46 µg·m−3 and 1.87 µg·m−3

for RH of 20–50% and 60–70%, with every increase of 1 ◦C. A surge in ozone concentration
was observed when the temperature increased from 30 ◦C to 32 ◦C at an RH of 80–100%.
Furthermore, a slight decrease in ozone concentration was observed as the temperature
exceeded 35 ◦C, excessive temperatures were found to inhibit ozone formation. Therefore,
high temperatures are conducive to ozone formation and are more likely to result in severe
ozone pollution, particularly when the temperature exceeds 30 ◦C. This finding is consistent
with previous studies conducted in this field [26,48].
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Figure 8. Variation curves of RH-O3 at different Temperature (a) and Temperature-O3 at different
RH (b).

(2) Atmospheric pollutants (NO2 and PM2.5)

NO2 was the main pollutant leading to ozone pollution, and the effect of VOCs
should also be considered when exploring the mechanism of NO2 participation in ozone
formation [54–56]. The ozone formation mechanism mainly includes two cycles: the NOx
cycle and ROx (alkoxyl radicals (RO) and organic peroxy radicals (RO2)) cycle, which are
mutually coupled to promote ozone formation [57]. In the atmosphere, NOx reacts with
oxygen radicals and oxygen molecules to provide a closed circulation of ozone through
photochemical reactions. At the same time, reactions of HO2 and RO2 with NO and the
photolysis of NO2 form the NOx cycle, which generates ozone without consuming NOx.
The ROx cycle provides HO2 and RO2 persistently to convert NO to NO2, which also
promotes the generation of ozone. Therefore, the ozone concentration is determined by
both the concentrations and the ratio of VOCs and NOx.

The trained GBDT model was utilized to predict the variation in ozone concentration
resulting from 1 µg·m−3 increment of NO2 while keeping other influencing factors con-
trolled at their mean values (prevailing WD). In Figure 9, it was observed that the reduction
in NO2 concentration within the park resulted in an increase in ozone concentration. During
the initial phase of declining NO2 concentration, there was no significant alteration in ozone
concentration due to the absence of photochemical reaction at night. Subsequently, during
the second phase, a gradual rise in ozone concentration occurred as NO2 concentration de-
creased from 80 µg·m−3 to 52 µg·m−3, with an associated ratio of ozone production to NO2
consumption equaling 0.10. In the subsequent stage, the ozone concentration exhibited a
rapid ascent, while the NO2 concentration declined from 41 µg·m−3 to 20 µg·m−3, and the
ratio of ozone production to NO2 consumption reached 2.73. Ultimately, as the NO2 level
diminished, the ozone concentration peaked and subsequently stabilized. Simultaneously,
the consumption of ozone during this process resulted in the production of NO2, exhibiting
an essentially contrasting trend.

The trained GBDT model was utilized to predict the variation in ozone concentration
resulting from a 1 µg·m−3 increment in PM2.5, while maintaining other influencing factors
at their mean values (prevailing WD).

As depicted in Figure 10, the relationship between ozone concentration and PM2.5
concentration exhibited a non-monotonic pattern. When the PM2.5 concentration was
below 25 µg·m−3, the relationship followed a V-shaped curve; as the PM2.5 concentration
increased from 25 µg·m−3 to 90 µg·m−3, the ozone concentration displayed an incremental
trend with step-like increases; However, once the PM2.5 concentration exceeded 90 µg·m−3,
there was a downward trend in ozone concentration with increasing level of PM2.5.
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ing process, the red arrows represent the changing trend, and the green labels represent ozone
concentration under varying NO2 level.).
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4. Discussion
4.1. Ozone Formation Mechanisms

The ozone level of the park was compared with that of stations located without
industrial parks within the local city. From 2016 to 2018, the 90th percentile values for
maximum daily average 8-h (MDA8) ozone concentrations recorded at the park were
179 µg·m−3, 194 µg·m−3 and 182 µg·m−3, respectively. In contrast, the corresponding
concentration at the station located away from the park was found to be lower, with values
of 175 µg·m−3, 167 µg·m−3, and 170 µg·m−3 during the same period [58]. Additionally,
some other research revealed that industrial parks exhibit distinct local characteristics of
VOCs and ozone pollution [22,23,59].

The temporal variation characteristics of pollutants and meteorological parameters
revealed that the temporal variation in ozone level exhibited a positive correlation with
temperature but an inverse relationship with NO2, while RH demonstrated stronger corre-
lations compared to other influencing factors. Additionally, the monthly and average daily
concentrations of NO2, CO, and PM2.5 displayed an opposite trend to that of ozone. The
stable meteorological conditions in winter were unfavorable for pollutants dispersion but
conducive to the generation of PM2.5, resulting in high concentrations of NO, NO2, CO,
and PM2.5. Furthermore, the average daily concentrations variations of ozone, NO2, NO,
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and CO were more pronounced than those of other pollutants due to the photochemical
reactions, titration effect, and mobile source emissions. Alkenes, ethyne, and aromatics
were identified as the unstable factors that impact ozone formation. The differences in
the effects of VOCs on ozone were primarily attributed to their varying reactivity. On
the one hand, alkenes, ethyne, and aromatics exhibited higher photochemical reactivity
compared to other species, thereby exerting stronger influences on ozone formation. On
the other hand, alkenes generally displayed faster reaction rates than aromatics, making it
more challenging to capture their immediate effects than the cumulative effect, while the
opposite situation prevailed for aromatics.

The results of the GBDT model also confirmed the significance of RH, temperature,
NO2, and PM2.5 in the formation of ozone. One interesting research found that increasing
O3 concentrations during the COVID-19 lockdown and the heavy O3 pollution event
were mainly caused by the photochemistry subject to local air quality and meteorological
conditions in petrochemical industrialized Lanzhou city, which was consistent with our
research results [60]. Temperature and NO2 were the key drivers, and RH was the ancillary
key driver among all the influencing factors on ambient ozone formation, which was also
confirmed in another research [61]. The influencing mechanism of four dominant factors
(RH, temperature, NO2, and PM2.5) on ozone was comprehensively analyzed in this study.

It was found that ozone pollution in the park was regulated by both RH and tempera-
ture. The promotion of ozone concentration growth due to rising temperature was observed
to be mitigated by increasing RH, particularly when the RH level reached 90% or higher.
The inhibitory effect of high RH clearly counteracted the impact of warming on ozone
concentration. The mechanism by which RH influences ozone formation encompasses
the following factors. Firstly, an increase in RH leads to a higher likelihood of rainfall,
which rapidly reduces ozone concentration through precipitation [26]. Secondly, RH can
impact the chemical reaction mechanism involved in ozone formation and consequently
induce changes in ozone concentration. Notably, elevated RH level significantly augments
the number of hydroxyl radicals available for reacting with and depleting ozone [27,32].
Furthermore, another study has also demonstrated that an elevated RH facilitates the
conversion of NO2 into nitric acid, thereby impeding ozone formation [62]. In our study,
temperature exhibited a high sensitivity to ozone, which is consistent with previous re-
search [63]. The influence of temperature on ozone level primarily arises from the following
factors. Firstly, elevated temperature induce the thermal decomposition of peroxyacetyl
nitrate (PAN), resulting in the generation of ozone precursors and facilitating ozone forma-
tion [28,62]. Secondly, increased temperature is often accompanied by heightened radiation
and reduced RH, both of which favor ozone formation, as previously discussed. Addition-
ally, higher temperatures promote the natural emission of isoprene [48]. Collectively, these
factors contribute to an elevation in concentrations of atmospheric ozone [64].

In this study chemical industrial park, VOCs originate from multiple sources with
various reactivity and are emitted through various pathways, leading to fluctuating con-
centrations and intricate compositions of VOCs within the park, which are relatively
oversaturated. Consequently, ozone demonstrates greater sensitivity towards changes in
NOx rather than VOCs. The investigation of industrial regions in Beijing revealed that
ozone formation in the industrial site was under a NOx-limited regime, thereby corroborat-
ing the observed sensitivity of ozone to NO2 in our study [23]. The variation in the ratio
between ozone production and NO2 consumption at different phases is primarily attributed
to variations in photochemical reaction rates under diverse meteorological conditions and
the concentration of active substances such as VOCs. The insignificant change in ozone
concentration under high NO2 levels can be attributed to two factors. On the one hand, the
accumulation of NO2 is a result of both ozone conversion and emissions from pollution
sources. On the other hand, the consumption of NO2 is primarily influenced by weak
photochemical reactions and limited other chemical reactions.

The intricate and dynamic relationship between PM2.5 and ozone is closely intertwined
with their complex changing curve. The impact of PM2.5 level on ozone formation cannot
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be simply characterized as promotion or inhibition but rather stems from the intricate web
of multiple interactions occurring between them. The heterogeneous chemical processes
involving mutual precursors on the surfaces of PM2.5 exert a significant influence on
ozone formation. Furthermore, elevated concentrations of PM2.5 contribute to increased
aerosols optical thickness and reduced photochemical reaction rate [25]. PM can scatter
and absorb sunlight, thereby modulating the photolysis rate and subsequently influencing
atmospheric oxidation and O3 generation [65]. Moreover, a decrease in PM concentration
leads to a reduction in the total surface area of aerosol as well as the deposition sink of the
oxidant, resulting in a deceleration of HO2 radical deposition on aerosol and subsequent
O3 production [66]. Consequently, it is imperative to integrate measures addressing PM2.5
levels with those targeting ozone pollution prevention and control to avoid potential
trade-offs.

4.2. Control Strategies for Ozone Pollution

The emission of substantial ozone precursors within the park, particularly VOCs and
NOx, gives rise to a distinct scenario wherein ozone pollution exhibits heightened sensitiv-
ity to meteorological parameters, notably RH and temperature. Adverse weather conditions
can diminish or counteract the efficacy of precursor emissions control measures. Hence, it
is imperative to explore their influencing mechanism as previously conducted. Simultane-
ously, efforts must be made to curtail controllable factors that contribute significantly to
ozone formation, especially anthropogenic pollutant emissions.

Firstly, it is crucial to adjust production in accordance with meteorological changes
within the park. Implementing seasonal production limitations plays a significant role in
preventing and controlling ozone pollution, necessitating comprehensive consideration of
enterprises’ production characteristics and capacity utilization based on pollutant discharge
license. Secondly, it is imperative to enhance the efficacy of measures aimed at reducing
NOx and active VOC emissions. There is a need to refine the rating scale for air pollution
prevention and control within the park while increasing the proportion of petrochemical
and chemical enterprises achieving performance ratings of A and B. Additionally, intensi-
fied efforts should be directed toward regulating unorganized emissions, with particular
emphasis on detecting bypasses in organic waste gas. Enhanced supervision should be
implemented for the torch in petrochemical enterprises to minimize the disposal of ex-
haust gas generated during routine production operations through the torch. Promote
the establishment of “fresh parks” and increase the adoption rate of new energy vehicles
or those compliant with National-VI emission standards within the park. Finally, during
high-temperature periods, it is necessary to implement targeted measures such as reducing
the RH of the environment through artificial rainfall and ground sprinkling, as well as
reducing precursor emissions through off-peak production. These strategies can effectively
regulate peak ozone concentration.

4.3. Advantages, Disadvantages and Prospect

In addition, the advantages and disadvantages of this research were discussed. The
data utilized in this study were extracted from a local monitoring station with good
integrity. The GBDT model expressed excellent performance in terms of interpretability,
accuracy, and robustness in simulating ozone concentration, the same as the outstanding
prediction performance discovered in other studies compared to various algorithms such as
eXtreme Gradient Boosting (XGBoost), support vector machine (SVM), and multiple linear
regression (MLR) in other study [44]. However, aiming to better train the GBDT model,
more data with a longer monitoring period, as well as more local monitoring parameters
that might be affected by ozone formation, will help, such as meteorology factors of cloud
cover and radiation.

Finally, based on our findings, we propose the following suggestions for future re-
search in the relevant areas.



Atmosphere 2024, 15, 600 17 of 21

(1) The investigation of ozone formation rules is conducted through a comprehensive
analysis of pollutant emissions from sources and meteorological data using machine
learning techniques.

(2) The assessment of the impacts of dominant factors on ozone levels during days with
high ozone pollution compared to those without pollution.

(3) The exploration of the quantized effects of pollution prevention and control measures
on ozone pollution.

5. Conclusions

Ozone and its impact factors, including pollutants (SO2, NO, NO2, CO, PM2.5, and
VOCs) and meteorological parameters (RH, temperature, WS, WD, P), were conducted
during 2018 to investigate the ozone formation rules in a typical chemical industrial park
in the Yangtze River Delta of China. Observation-based analyses and machine learning
were used to identify the rules for ozone pollution in the park, which were affected by both
the complex emission environment and volatile meteorological parameters. Furthermore,
the trained GBDT model was utilized to establish a specific and quantifiable relationship
between an individual impact factor and ozone within a complex and uncertain multi-factor
context. The research produced the following results, which were helpful for controlling
small-scale ozone pollution, improving air quality, and reducing risks to human health.

(1) The temporal variation of pollutants and meteorological parameters were compre-
hensively discussed. The ozone level exhibited a temporal variation consistent with
temperature but opposite to that of NO2. RH showed stronger correlations than
other influencing factors. Additionally, PM2.5 and VOCs, particularly alkenes and
aromatics, were identified as unstable factors that also influenced ozone formation.
Ozone pollution was found to be most prevalent during the months of April to
October (M4–10).

(2) The GBDT model was employed to investigate the ozone formation rules in M4–10.
Results revealing the importance of permutation revealed that RH, NO2, temperature,
and PM2.5 were the four most influential factors in ozone formation. The ozone
level in the park was found to be more sensitive to meteorological parameters than
atmospheric pollutants. An RH of 50% was identified as being most conducive to
ozone accumulation. At RH level above 50%, every 1% increase in RH corresponded
to a reduction in ozone concentration of approximately 1.01 µg·m−3 and 2.69 µg·m−3

at temperatures ranging from 5–20 ◦C and 25–37 ◦C, respectively. The increase in
temperature resulted in elevated ozone concentrations, with the ozone concentration
rising by 1.86 µg·m−3 and 3.46 µg·m−3 at RH levels of 20–50% for temperature ranges
of 10–22 ◦C and 22–36 ◦C respectively, for every increment of 1 ◦C. The process of
ozone generation resulting from NO2 depletion can be divided into a steady period,
slow climbing period, rapid climbing period, and equilibrium period. The ratio of
ozone production to NO2 consumption was 0.10 and 2.73 as the NO2 concentration
decreased from 80 µg·m−3 to 52 µg·m−3 and from 41 µg·m−3 to 20 µg·m−3. Fur-
thermore, the relationship between ozone concentration and PM2.5 concentration
exhibited a non-monotonic pattern.

(3) The mechanisms of four dominant factors influencing ozone formation were also
discussed. Temperature and RH primarily regulate the direction of physical and
chemical reactions involved in ozone formation, while NO2 and PM2.5 predominantly
affect ozone through precursor emissions and chemical reactions. Comprehensive
measures need to be implemented for the prevention and control of ozone pollution in
industrial parks, including seasonal capacity adjustments and reduction of NOx and
reactive VOC emissions. In future studies, it is essential to enhance the assessment of
the impacts exerted by dominant factors on ozone levels during polluted days and
non-polluted days while also quantifying the effects of diverse pollution prevention
and control measures on ozone concentrations.
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