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Abstract: Soil organic matter (SOM) is important for the global carbon cycle, and hyperspectral
remote sensing has proven to be a promising method for fast SOM content estimation. However,
because of the neglect of the spectral response of soil physical properties, the accuracy and spa-
tiotemporal transferability of the SOM prediction model are poor. This study aims to improve the
spatiotemporal transferability of the SOM prediction model by alleviating the coupling effect of soil
physical properties on spectra. Based on satellite hyperspectral images and soil physical variables,
including soil moisture (SM), soil surface roughness (root-mean-square height, RMSH), and soil bulk
weight (SBW), a soil spectral correction model was established based on the information unmixing
method. Two important grain-producing areas in Northeast China were selected as study areas
to verify the performance and transferability of the spectral correction model and SOM content
prediction model. The results showed that soil spectral corrections based on fourth-order polyno-
mials and the XG-Boost algorithm had excellent accuracy and generalization ability, with residual
predictive deviations (RPDs) exceeding 1.4 in almost all the bands. In addition, when the soil spectral
correction strategy was adopted, the accuracy of the SOM prediction model and the generalization
ability after the model migration were significantly improved. The SOM prediction accuracy based
on the XG-Boost-corrected spectrum was the highest, with a coefficient of determination (R2) of 0.76,
a root-mean-square error (RMSE) of 5.74 g/kg, and an RPD of 1.68. The prediction accuracy, R2

value, RMSE, and RPD of the model after the migration were 0.72, 6.71 g/kg, and 1.53, respectively.
Compared with the direct migration prediction of the model, adopting the soil spectral correction
model based on fourth-order polynomials and XG-Boost reduced the RMSE of the SOM prediction
results by 57.90% and 60.27%, respectively. This performance comparison highlighted the advantages
for considering soil physical properties in regional-scale SOM predictions.

Keywords: soil organic matter; soil physical properties; hyperspectral imagery; spectrum correction;
model migration

1. Introduction

With social development and the continuous growth of population and consumption,
global food security issues have become increasingly prominent [1]. Accurately monitoring
soil conditions is of great significance for ensuring sustainable agricultural development
and global food security [2–4]. Soil organic matter (SOM) is an important component of
soil, which not only provides nutrients for plant growth but also improves soil physical,
chemical, and biological conditions [5]. Obtaining the spatial distribution information of
the SOM in cultivated land is a key prerequisite for the utilization and management of soil
resources and can provide key basic data for agricultural disaster assessment and food
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security scenario simulations [6,7]. In addition, a large portion of the SOM is composed of
organic carbon, which constitutes the largest carbon pool in terrestrial ecosystems [8]. Minor
soil carbon pool changes can significantly alter the atmospheric CO2 concentration, thereby
affecting global carbon cycling and the climate [9]. Therefore, precisely understanding
the SOM content and spatial distribution is crucial for promoting sustainable agricultural
development, enhancing the soil carbon sequestration potential, and regulating global
climate change [10,11].

Remote sensing is a low-cost, high-accuracy, real-time method for multi-angle, multi-
temporal, and large-area Earth observations [12–14]. To date, the ability of hyperspectral
remote sensing to predict and map SOM contents has been confirmed in many stud-
ies [15–17]. Imaging spectra are the most important data source, and their characteristic
response to the soil chemical composition is an important foundation for hyperspectral
remote-sensing-based SOM content prediction [18–20]. As an important dyeing material
of the soil, SOM can significantly absorb the incident light in the visible-light band, or
even the short-wave infrared band, and there is usually a significant negative correlation
between its content and the soil spectral reflectance. However, imaging spectra are not
affected by the soil composition alone but comprehensively reflect the soil physical proper-
ties and chemical composition within the ground sample, and the soil physical properties
and chemical composition exert a coupling effect on the response to the spectrum [21–23].
Previous studies on SOM prediction lack consideration of soil physical properties, ignoring
the spectral response of soil physical properties, such as soil moisture (SM), soil bulk weight
(SBW), and surface roughness properties (e.g., root-mean-square height, RMSH), result-
ing in poor accuracy and poor spatiotemporal transferability of SOM prediction models.
Research has shown that the scattering contribution of soil physical properties to spectral
reflectance severely affects the sensitivity of hyperspectral data to the SOM content [24]. As
the SM content increases continuously until saturation, the soil reflectance decreases first
and then increases because of the specular reflection effect [25]. In addition, RMSH incre-
ments enhance light scattering and transmission on the soil surface, thus decreasing the
reflectivity, especially in the visible and near-infrared wavelength ranges [26]. Meanwhile,
long-term high-intensity mechanized planting increases the SBW of cultivated land. The
concomitant changes in SM, SBW, and spectral reflectance exhibit a complex relationship.
Generally, increases in SM, SBW, and RMSH decrease the spectral reflectance, showing a
coupling effect [27,28]. Noteworthily, the effect of the SOM content on the soil spectrum is
far weaker than that of soil physical properties [29]. Because of the satellite revisit period
and soil physical condition uncertainties, the effect of the noise interference of soil physical
properties on the spectrum greatly limits the accuracy and spatiotemporal transferability of
the remote-sensing-based SOM evaluation model, which needs to be solved urgently.

Reducing the influence of soil physical properties on hyperspectral data is the key to
improving the spatiotemporal transferability of SOM content prediction models. To this
end, some scholars have tried to develop satellite hyperspectral image correction methods
considering soil physical properties at the pixel scale to reduce the sensitivity of SOM
prediction models to spectral differences caused by soil physical property changes [30].
Minasny et al. developed a spectral correction model based on the EOP method to eliminate
the influence of the SM [31]. Ou et al. established a spectral correction model for SM removal
based on the Kubelka–Munk method to improve the accuracy of SOM predictions [27].
Castaldi et al. synthesized the dry-soil spectrum by calculating the statistical variabilities
of dry and wet soils, thereby improving the model prediction accuracy [21]. Although
these methods have corrected hyperspectral data to a certain extent, they are mostly based
on one physical parameter and ignore the coupling response of different soil physical
properties to the spectrum. In particular, in cultivated soil affected by both natural and
human factors, the complex physical properties of the soil have significant spatial and
temporal heterogeneities and transient variability [20,32,33]. Spectral correction models
based on a single soil physical parameter have limited improvements in SOM prediction
accuracy and spatiotemporal transferability. To date, because of the scarcity of soil physical
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data from satellite ground synchronization experiments, the potential of hyperspectral
correction methods comprehensively considering multiple soil physical properties has not
been fully explored.

Developing a soil spectral correction method by alleviating the coupling effect of
surface physical properties on soil pixel spectra is an effective solution to improve the
spatiotemporal transferability of the SOM prediction model. Complex interactions be-
tween various surface physical properties and electromagnetic waves make it difficult to
simulate the relationship between soil physical properties and the spectrum with phys-
ical models [27]. Therefore, this study aims to separate the physical and chemical soil
information in the spectral data with data-driven methods. Some of the issues that must
be addressed in advance include (i) quantifying the effect of soil physical properties on
satellite hyperspectral data and (ii) generalizing the model in areas with scarce soil sample
data. Studies have indicated various functional relationships between soil physical param-
eters (SM, RMSH, and SBW) and spectral reflectance, including logarithmic, exponential,
and power exponential functions [26,34]. However, most previous studies were based
on multispectral data, while the effect of soil physical properties on reflectance remain to
be clarified based on hyperspectral data with more continuous and dense bands [35,36].
Although these functional relationships may change slightly because of differences in soil
types, components, etc., they generally reflect the spectral characteristics induced by soil
physical properties and are an essential basis for representing soil physical property infor-
mation in spectral data [37–39]. Based on this, spectral forward modeling can be carried
out using soil physical properties, providing prior data for soil spectral correction [40].
Moreover, to effectively decompose the soil physical and chemical information in the pixel
spectrum, nonlinear parameter regression and machine-learning models have been used to
simulate the coupling relationship between soil physical property spectra and pixel spectra,
respectively. These two data-driven methods search for the rules between data through
statistical analysis and machine-learning training, respectively. In this way, unknown data
can be predicted, and the generalization ability of the soil spectral correction method can
be guaranteed by the regression equation. For the SOM prediction model, the soil spectral
correction redistributes the observational information of the original hyperspectral remote
sensing to ensure the uniformity of the soil physical properties of all the pixels, which helps
to improve the spatiotemporal transferability of the model [41–43].

This work seeks to establish a hyperspectral SOM prediction model with high spa-
tiotemporal transferability, which can guide soil investigation and parameter prediction.
The objectives of this study are (i) evaluating the impact of soil physical properties on
the image pixel spectrum and their contribution to the bias in SOM content prediction,
(ii) developing soil spectral correction methods by alleviating the coupling impact of soil
physical properties on the satellite spectrum, and (iii) determining the spatiotemporal
transferability potential of satellite hyperspectral data for SOM retrieval based on a soil
spectral correction strategy. Data-poor regions might benefit from the proposed SOM
prediction model with strong spatiotemporal transferability when mapping the SOM to
develop appropriate policies.

2. Materials and Methods

This study comprehensively considered the coupling effects of soil physical properties,
such as SM, RMSH, and SBW, on satellite hyperspectral images and proposed a soil spectral
correction method. The workflow includes data collection, spectral analysis, spectral
correction, and modeling evaluation, as shown in Figure 1. First, parameter estimation
equations were used to establish empirical relationships between satellite hyperspectral
data and the three main soil physical parameters: SM, RMSH, and SBW. The spectral data
of the soil physical properties were obtained by spectral forward simulation using soil
physical parameters. Then, a soil pixel spectral correction model was constructed based
on the simulated spectrum, soil pixel spectrum, and ground spectrum using multi-order
polynomials and various machine-learning models to remove the effects of the SM, RMSH,
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and SBW on the image spectrum. Finally, the SOM prediction model was constructed using
XG-Boost, and the performance of the soil spectral correction model and its improvement
effect on the SOM prediction accuracy were evaluated at two sites.
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Figure 1. Framework of the proposed SOM estimation model.

2.1. Study Area

Site 1 is in the protected black soil cultivated land of Heilongjiang Province, Northeast
China (131◦30′–132◦03′ E, 46◦36′–46◦49′ N), as shown in Figure 2, which has an area of
1095 km2. This region features a temperate continental monsoon climate, with an annual
precipitation of 450–650 mm. The precipitation is mainly concentrated in June–September,
accounting for 80% of the annual total. The terrain of the study area is high in the south
and low in the north, higher in the west than in the east, and most of the area is an
accumulation plain [44]. This research area is in one of only four black soil areas in the
world, characterized by a deep cultivated layer and fertile soil. The thickness of the soil layer
containing humus is 25–80 cm, suitable for planting crops such as corn and soybeans [45].

Site 2 is in the protected black soil cultivated land of Jilin Province, China
(125◦24′–125◦43′ E, 44◦36′–44◦46′ N), as shown in Figure 2, which has an area of 713 km2.
Its terrain is flat, with an elevation between 189 and 237 m. This region is a transitional
zone between the humid mountainous area in the east and the semi-arid plain area in the
west. This study area features a temperate continental semi-humid monsoon climate, with
an average annual temperature of 4.6 ◦C and an annual precipitation of 600–700 mm. This
region has rich river systems, relatively abundant agricultural water resources, and strong
SM spatial heterogeneity. The soil in this region is mainly phaeozems with a 0.6–1.0 m
humus-containing layer [46,47]. Site 2 has a significantly different soil type, surface charac-
teristics, and other environmental factors than Site 1, which can verify the spatiotemporal
transferability of the SOM content prediction model in this study.
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Figure 2. Study area overview. (a) The geographical location of the study area; (b,c) the soil-sampling
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2.2. Datasets
2.2.1. Soil Sample Collection and Treatment

A total of 104 surface soil samples were collected from Site 1 between 29 and 30 October
2022 (Figure 2b). Among them, 80 soil samples were used as the training set for the models,
and the remaining 24 samples were used as the validation set. Between 14 and 15 April 2023,
40 surface soil samples were collected from Site 2 (Figure 2c) for testing the spatiotemporal
transferability of the models. First, a 3D laser scanner (Trimble TX8, Trimble, CA, USA;
scanning speed: 1 million points per second) was installed at the midpoint of each edge
in the quadrant to scan the soil surface structure (Figure 3). Next, nine subsamples were
collected with a ring knife (depth: 5 cm and volume: 200 mL) in each 30 × 30 m quadrant.
The real-time kinematic (RTK) survey technique was used to record the longitude and
latitude of the quadrant’s midpoint.

After the samples were transported to the laboratory, the SM and SBW of the nine sub-
samples from each quadrant were obtained through weighing and drying, and the average
of the subsamples was calculated. Then, the nine subsamples were mixed into a composite
sample for laboratory spectral measurements (ASD FieldSpec 4 spectrometer, ASD Specialty
Healthcare, LLC, Sioux Falls, SD, USA) (taking the average of 10 measurements) and SOM
content determination using the potassium dichromate heating method [48]. To ensure
the same SBW of each sample, soil samples were loaded in a disposable culture dish for
spectral measurements. The soil surface point cloud data of each measurement site were
spliced, cropped, and filtered. The processed point cloud data were used to establish a
three-dimensional relative coordinate system (Figure 3b); the Z coordinates of all the point
cloud data were extracted, and the RMSH of the quadrant was calculated.
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Figure 3. The schematic diagram of the soil sample collection and parameter measurement in the
sample square. (a) Schematic diagram of the sampling strategy in the quadrant; (b) soil surface point
cloud data measurement.

2.2.2. Image Acquisition and Treatment

The Ziyuan-1-02D (ZY1-02D) hyperspectral image data were acquired from the
Aerospace Information Research Institute at the Chinese Academy of Sciences. The image
generation time is synchronized with the soil-sampling time. All the images have less
than 1% cloud coverage. The technical parameters of the ZY1-02D satellite hyperspectral
camera are listed in Table 1. The sensor exhibits strong noises in wavelength ranges from
400 to 450 nm and from 2460 to 2500 nm and is affected by atmospheric water vapor
absorption in wavelength ranges from 1290 to 1408 nm and from 1828 to 1963 nm [49].
Therefore, the 450 to 1290 nm, 1408 to 1828 nm, and 1963 to 2460 nm bands were selected
as the spectral bands in this study. The images were subjected to stripe removal, geometric
correction, and atmospheric correction. To correct the bidirectional reflectance distribution
function effect of the image, the zenith angle and azimuth angle of the sun (and satellite)
are calculated, and the image is corrected by the kernel-driven bidirectional reflectance
distribution function model [50].

Table 1. ZY1-02D satellite hyperspectral camera parameters.

Specification Parameter

Spectral range (nm) 400–2500
Channels 76 (VNIR); 90 (SWIR)

Spectral resolution (nm) 10 (VNIR); 20 (SWIR)
Swath width (km) 60

Spatial resolution (m) 30
Revisit cycle (d) 3

Lateral swing capacity (◦) ±26

2.3. Spectral Correction Strategy

The image pixel spectrum comprehensively reflects the soil physical properties (e.g., SM,
RMSH, and SBW) and chemical composition within the ground quadrant. Spectral correction
aims to separate reflection features attributed to physical and chemical properties of the soil in
pixel spectral data, thus alleviating the coupling effect of the soil physical properties on the
spectrum. First, linear, exponential, power exponential, and logarithmic parameter estimation
equations were used to establish empirical relationships between satellite hyperspectral data
and the three soil physical parameters, SM, RMSH, and SBW, on a band-by-band basis. These
parameter estimation methods for fitting the relationship between the soil physical properties
and spectral reflectance have been verified in several studies [34,36].

Parameter estimation equations were used to establish empirical relationships between
satellite hyperspectral data and the three main soil physical parameters: SM, RMSH, and
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SBW. The spectral data of the soil physical properties were obtained by spectral forward
simulation using soil physical parameters. The soil ground spectrum, measured with
dried and ground soil samples, is regarded as a “pure spectrum” that only reflects the
soil’s chemical composition information [51]. Based on this, a spectral correction model
was constructed, which took the pixel spectrum and three sets of soil physical parametric
simulated spectra as input and laboratory-measured spectra as training targets. Through
multi-order polynomials and various machine-learning algorithms, correction relations
between the pixel spectrum and the ground spectrum were established to strip the reflection
information attributed to soil physical properties in the pixel spectrum. The multi-order
polynomial equation is as follows:

RG =
n

∑
i=1

(aiRSM + biRRMSH + ciRSBW + diRP)
i + e (1)

where RG is the laboratory-measured soil reflectance, RSM is the soil reflectance simulated
based on SM, RRMSH is the soil reflectance simulated based on RMSH, RSBW is the soil
reflectance simulated based on SBW, RP is the soil reflectance of the image pixel, i is the
polynomial order, and ai, bi, ci, di, and e are regression coefficients.

2.4. Machine-Learning Models
2.4.1. Competitive Adaptive Reweighted Sampling (CARS)

CARS is adopted to extract sensitive bands corresponding to SOM in the hyperspectral
data. CARS imitates the “survival of the fittest” principle of Darwin’s evolutionary theory.
Through adaptive weighted sampling, it screens out the wavelengths with large absolute
coefficients of the PLS model and removes the wavelengths with small weights, thus
obtaining many subsets of wavelength variables. Next, the subset of wavelengths with the
lowest root-mean-square error is selected via cross-validation as the optimal subset [42,52].

2.4.2. eXtreme Gradient Boosting (XG-Boost)

XG-Boost is an ensemble-learning model based on the boosting strategy, which com-
bines several CART trees into a strong learner. As an ensemble algorithm framework,
it supports the parallel gradient lifting of the base learner, thus greatly improving the
model-training speed. The Newton method is used to solve the extreme value of the loss
function, which is expanded to the second order using the Taylor formula. The loss function
is optimized with the first-order gradient function and second-order gradient function
to reduce the model complexity [53]. Simultaneously, the probability for over-fitting is
reduced through regularization, significantly improving the model’s generalization ability.

2.4.3. Model Validation

In this study, the coefficient of determination (R2), root-mean-square error (RMSE), and
residual predictive deviation (RPD) were selected as evaluation indices, as expressed below:

R2= 1−
n

∑
i=1

(yi − Yi)
2/

n

∑
i=1

(yi − y)2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − Yi)
2 (3)

RPD = SD/RMSE (4)

where n is the number of samples, yi is the measured value of sample i, Yi is the predicted
value of sample i, and y is the average value of the measurements.
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3. Results
3.1. Descriptive Statistics of Soil Parameters

The basic statistical analysis results of the soil parameters are listed in Table 2. At
Site 1, the mean SM, RMSH, and SBW values were 0.25 cm3/cm3, 2.49 cm, and 0.98 g/cm3,
respectively, with standard deviations (SDs) of 0.08 cm3/cm3, 0.77 cm, and 0.15 g/cm3. The
SOM content varied significantly from 25.84 to 75.97 g/kg, with an SD of 10.51 g/kg and a
coefficient of variation (CV) of 24.30%. Site 2 had significantly different soil properties from
Site 1. The average SM, RMSH, and SBW were 0.37 cm3/cm3, 3.65 cm, and 1.13 g/cm3,
respectively, which were significantly higher than those at Site 1 and had stronger variabil-
ities. The SOM content at Site 2 ranged from 27.40 to 72.97 g/kg, averaging 41.57 g/kg,
which was lower than that at Site 1.

Table 2. Descriptive statistics of soil parameters and SOM content.

Dataset Unit
Site 1 Site 2

Min. Max. Mean SD CV% Min. Max. Mean SD CV%

SM cm3/cm3 0.14 0.47 0.25 0.08 31.99 0.21 0.63 0.37 0.14 37.93
RMSH cm 1.32 4.99 2.49 0.77 30.92 2.04 5.78 3.65 1.34 36.71
SBW g/cm3 0.71 1.41 0.98 0.15 15.31 0.85 1.51 1.13 0.18 15.92
SOM g/kg 25.84 75.97 43.25 10.51 24.30 27.40 72.97 41.57 10.28 24.72

3.2. Effect of Soil Physical Properties on Soil Spectra

To verify the reliability of the ZY1-02D hyperspectral image, the soil pixel spectrum
was compared with the soil ground spectrum (Figure 4). Although the soil pixel spectrum
has a similar shape to that of the soil ground spectrum, it has some noise and a relatively low
smoothness, especially in the VNIR wavelength range. In addition, the spectral reflectance
in the soil pixels was slightly lower than that measured in the laboratory. The Spearman
correlation coefficients (SCCs) and Pearson correlation coefficients (PCCs) between the
pixel reflectance and ground reflectance were calculated. The results showed that the PCCs
were below 0.5 at most wavelengths, while the SCCs in the 480 to 680 nm and 2000 to
2500 nm wavelength ranges were basically greater than 0.5, indicating a possible nonlinear
relationship. To reveal the factors affecting the pixel spectrum, the differences in the soil
reflectance between different physical property gradients were compared. With the increase
in SM, the soil spectral reflectance decreased significantly, especially in the 500 to 1300 nm
and 1450 to 1700 nm wavelength ranges (Figure 5). The soil spectral reflectance decreased
relatively slightly with the increase in SBW. The effect of the RMSH on the soil spectrum
was the most significant, and the reflectance decreased significantly with the increase in
RMSH. In summary, the coupling effect of the SM, SBW, and RMSH on the spectrum is an
important reason for the deviation in the two sets of spectral data, which severely limits
the acquisition of the soil’s “pure spectrum” by the imaging spectrometer. Therefore, it is
necessary to separate the soil physical and chemical information in the pixel spectral data
and improve the SOM prediction accuracy of hyperspectral remote sensing.
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3.3. Empirical Relationship between Satellite Hyperspectral Image and Soil Physical Properties

The empirical coefficients were regressed based on the field data and soil pixel spec-
trum to determine the relationship of the soil reflectance with SM, RMSH, and SBW
(Figure 6). Among the fitting equations between the SM and soil reflectance, the exponen-
tial equation has the best fitting effect. Except for the 2000 to 2500 nm wavelength range,
the fitting results were good, with R2 ranging from 0.49 to 0.68. In the 2000 to 2500 nm
wavelength range, the fitting between the SM and reflectance was not good, possibly be-
cause of the effect of the absorption of clay minerals on the spectral characteristics, caused
by the hydroxyl groups in the soil. With higher clay mineral contents, the water retention
capacity of the soil was greater. According to the fitting results between the SBW and soil
reflectance, the exponential equation fitted the best in the 450 to 1800 nm wavelength range,
with R2 ranging from 0.50 to 0.69, while the power exponential equation fitted the best in
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the 2000 to 2500 nm wavelength range. In terms of the entire wavelength range, RMSH had
the strongest fitting relationship with the soil reflectance among the three groups of soil
physical parameters, implying its most significant effect on the soil spectrum. Among the
four equations, the logarithmic equation had the best fitting effect, with R2 ranging from
0.55 to 0.69. In general, the best empirical relationship of the soil reflectance with SM is
exponential, that with RMSH is logarithmic, and that with SBW is exponential in the 450
to 1800 nm wavelength range and power exponential in the 2000 to 2500 nm wavelength
range. Three sets of soil reflectance data were simulated based on the empirical relationship
between soil physical parameters and soil spectra (Figure 7). The soil reflectance simulated
based on SM showed an almost uniform trend between 2000 and 2500 nm, implying that
the effect of the SM on the reflectance in this wavelength range was suppressed by other
factors, resulting in insignificant spectral features. Other than that, the remaining simulated
soil spectra showed significant differences.
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3.4. Modeling of Soil Spectral Correction

Empirical coefficient models and machine-learning models were employed to establish
the correction relationship between the soil pixel spectrum and soil “pure spectrum”. The
multi-order polynomial-based soil spectral correction model showed improved accuracy
with the increasing order, and its RPD and RMSE were optimal in all the bands at the fourth
order (Figure 8). When the order reached the fifth order, R2 still maintained an increasing
trend, but RPD decreased significantly, indicating that the model was over-fitting. The
RMSE of the fourth-order polynomial model was less than 0.04, and the RPD was above
1.5, indicating good correction accuracy.
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Four machine-learning algorithms, namely, support vector machine regression (SVR),
an extreme learning machine (ELM), a backpropagation neural network (BPNN), and
XG-Boost, were used to construct soil spectral correction models in the same way. The best
soil spectral correction model was determined by comparing the mapping ability of the
different machine-learning algorithms to the coupling relationship between multiple soil
spectra (Figure 9). The correction results showed that the four machine-learning algorithms
differed significantly in the soil spectral correction accuracy. The accuracy fluctuations
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around the 1000 nm wavelength may be caused by other noise in the spectral data. Other
than that, all the soil spectral correction results were good, and the overall accuracy was
high relative to that of the polynomial-based models. As a representative algorithm of the
ensemble-learning model, XG-Boost achieved the best spectral correction results, with R2

above 0.6 and RPD above 1.6 for all the bands. The second best was ELM, while SVM and
BPNN performed poorly.
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The soil spectral correction accuracy based on the fourth-order-polynomial model and
XG-Boost model was high, and these two sets of spectral data were selected for in-depth
analysis. The results showed that the corrected spectrum based on XG-Boost was smoother
than the corrected spectrum based on the fourth-order polynomial and fit the shape of
the soil’s “pure spectrum” more closely (Figure 10). The calculated correlation coefficients
between the soil’s “pure spectrum” and the corrected spectrum showed that the PCCs
at most wavelengths were above 0.8, which was greatly improved compared with the
correlation between the soil’s “pure spectrum” and the original pixel spectrum. Therefore,
after the spectral correction, the spectral response, induced by soil physical properties,
in the soil pixel spectrum was alleviated, and the proportion of the information on the
soil’s chemical-composition-response signals in the image spectral data was significantly
increased. In general, the correction results of the XG-Boost model are slightly better than
those of the fourth-order-polynomial model. However, the accuracy improvement effect of
these methods on hyperspectral SOM prediction needs further analysis through modeling.

3.5. SOM Content Prediction Accuracy

Four types of soil spectral data, namely, a pixel spectrum, a fourth-order-polynomial-
corrected spectrum, an XG-Boost-corrected spectrum, and a ground-based spectrum, were
used to establish the SOM content prediction models. To reduce the data dimensionality and
improve the computational efficiency of the model, the spectral data were first subjected to
feature extraction. Pearson’s correlation coefficient threshold was used to determine the
sensitive bands of the SOM. The correlation coefficient distribution between the four sets
of soil spectral data and SOM content showed a relatively consistent trend. Specifically,
the correlation coefficient decreased with the increasing wavelength before the 800 nm
wavelength and increased after the 800 nm wavelength (Figure 11a). The bands with
absolute correlation coefficients above 0.5 were selected as the sensitive bands of the SOM.
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The sensitive spectral bands corresponding to the SOM in the four spectral datasets of the
pixel spectrum, fourth-order-polynomial-corrected spectrum, XG-Boost-corrected spectrum,
and ground-based spectrum were concentrated in wavelength ranges from 628 to 1023 nm,
from 524 to 1223 nm, from 542 to 1560 nm, and from 550 to 1762 nm, respectively. CARS
was adopted to further extract the optimal subset of features containing the least-redundant
information in the sensitive bands. The optimal number of CARS iterations was determined
by the RMSECV of the multiple regression (Figure 11b). The bands listed in Table 3 are the
spectral bands selected by CARS for SOM inversion modeling and validation analysis.
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The four sets of spectral bands selected through CARS and the SOM contents were
used as the input data of the model. The XG-Boost algorithm is used to construct the
SOM prediction model. The results indicated that these two spectral correction methods
significantly improved the SOM prediction accuracy based on the original pixel spectrum.
Among all the SOM prediction results, the ground spectral data had the highest prediction
accuracy, with R2

P, RMSEP, and RPD values of 0.79, 4.89 g/kg, and 1.97, respectively
(Figure 12). The prediction accuracy evaluated based on R2

P was 0.64 when the original
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pixel spectral dataset was used as model input data. Adopting the soil spectral correction
strategy based on fourth-order polynomials increased the prediction accuracy (R2

P) by 0.05,
decreased RMSEP by 2.28 g/kg, and increased RPD by 0.38. The soil spectral correction
strategy based on the XG-Boost model had a greater SOM prediction accuracy improvement,
with an R2

P increase of 0.12, an RMSEP decrease of 3.10 g/kg, and an RPD increase of 0.59.
The SOM prediction accuracy with the corrected spectrum came close to that with the
ground spectrum, implying that the spectral correction model can effectively improve the
hyperspectral SOM prediction accuracy.

Table 3. Features’ band statistics selected based on CARS.

Spectral Correction Method Wavelength (Unit: um) Total

Pixel spectrum 0.67; 0.68; 0.70; 0.72; 0.74; 0.77; 0.79; 0.84;
0.87; 0.90; 0.93 11

Fourth-order-polynomial-corrected spectrum 0.55; 0.60; 0.62; 0.68; 0.73; 0.76; 0.78; 0.82;
0.85; 0.87; 0.91; 0.96; 0.99; 1.07 14

XG-Boost-corrected spectrum 0.55; 0.62; 0.64; 0.69; 0.73; 0.77; 0.81; 0.83;
0.87; 0.89; 0.92; 0.94; 0.99; 1.05; 1.17 15

Ground-based spectrum 060; 0.63; 0.67; 0.70; 0.73; 0.77; 0.81; 0.85;
0.87; 0.90; 0.91; 0.96; 0.99; 1.03; 1.08; 1.22 16Agronomy 2024, 14, 1067 15 of 23 
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4. Discussion
4.1. The Spatiotemporal Transferability of the Soil Spectral Correction Model and SOM
Prediction Model

The soil pixel spectral correction methods based on empirical coefficient and machine-
learning models provided new strategies for improving the SOM prediction accuracy
based on hyperspectral images. The soil spectral correction method based on XG-Boost
significantly affected the SOM prediction accuracy improvement, but its correction process
and principles were difficult to express mathematically. Despite its weak SOM prediction
accuracy improvement, the soil spectral correction method based on the fourth-order-
polynomial model expressed the improved method with the coefficient equation, which
was more conducive to its promotion. The high transferability of the soil spectral correction
method is a key prerequisite for constructing an SOM prediction model with strong gener-
alization ability [54]. To verify their spatiotemporal transferability, 40 groups of Site 2 soil
pixel spectra and ground experimental data were imported into the two spectral correction
models. The spectral correction results showed that the corrected soil spectra were very
consistent with the shape of the soil’s “pure spectra” (Figure 13). Compared with the soil
spectrum after the fourth-order-polynomial correction, the soil spectrum corrected with the
XG-Boost model is smoother. According to the accuracy of the model migration test results,
the soil spectral correction model based on XG-Boost showed better migration performance,
with RPD above 1.4 for all the bands. The machine-learning algorithms represented by
XG-Boost were much better than the coefficient models in terms of the calculation ability
to establish the coupling relationship between multiple soil spectra and its adaptability to
new data. The reason is that this ensemble-learning model comprehensively utilizes all
the eigenvalues of each soil sample point and continuously adjusts the weight of the tree
through iteration to explore the optimal solution of the coupling relationship between the
soil physical properties and pixel spectrum [43,55].
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The poor transferability of SOM remote-sensing prediction models is mainly attributed
to their poor applicability to different spatiotemporal spectral data [56,57]. To evaluate
the improvement effect of the soil spectral correction methods on the spatiotemporal
transferability of SOM prediction models, the SOM prediction model established using
Site 1 data was used to predict the SOM content at Site 2. The SOM prediction model
based on ground spectra exhibited the best transferability, with RMSEP only increasing by
0.39 g/kg (Figure 14). However, the transferability of SOM prediction models based on
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the original pixel spectrum is extremely poor, as surface physical property changes cause
spectral reflectance deviations. After the transferability verification, RMSEP increased
by 8.05 g/kg, while RDP decreased by 44.04%. Adopting the two soil spectral correction
strategies significantly improved the transferability of the prediction model, with an RPD
of over 1.4 for the model transferability validation. The SOM prediction model based on
the XG-Boost-corrected spectrum had greater transferability. Compared with the model
transferability validation based on the pixel spectrum, RMSEP was reduced by 60.27%, and
RPD was increased by 150.82%. These findings proved the effectiveness of the soil spectral
correction methods and the feasibility of the corrected satellite hyperspectral data in SOM
content predictions. The SOM prediction model based on corrected satellite hyperspectral
data can be used even at two sites with different soil types, soil physical properties, SOM
contents, and spatiotemporal features. The core of this soil spectral correction method
is to comprehensively consider the coupling effect of various soil properties on spectral
reflectance to restore the true spectral characteristics of the research target. For different
research objectives, the main factors affecting the spectral response of the target can be
analyzed according to the actual environment and imaging conditions [35]. Therefore, the
proposed method is not limited to SOM predictions and can provide valuable insights for
soil property predictions based on satellite hyperspectral data.
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4.2. Contribution of Soil Physical Properties to SOM Content Prediction Bias

The soil spectral correction method proved to greatly improve the SOM content
prediction accuracy and spatiotemporal transferability of the pixel spectrum. In other
words, soil properties (SM, RMSH, and SBW) may be the main factors leading to errors
in SOM estimation based on original pixel spectra. This section investigated the error
dependence of the original pixel spectrum and two sets of corrected spectral data on SM,
RMSH, and SBW, and their contribution to the SOM content prediction bias was estimated
through the stepwise regression method. The results showed that the cumulative deviation
contribution rate of these three soil properties to the SOM prediction results based on
the original pixel spectrum was over 70% at both sites (Figure 15). Thus, soil physical
properties are the main error source of SOM predictions [50]. The contribution of the SM
to the SOM bias was the highest, followed by RMSH and SBW. This is related to the most
significant response of the pixel spectrum to SM within the sensitive wavelength range of
the SOM and possibly the stronger spatial heterogeneity of the SM compared to RMSH and
SBW. Adopting the spectral correction strategy significantly reduced the bias of the SM,
RMSH, and SBW in SOM predictions. The soil spectral correction based on XG-Boost more
significantly reduced the SOM prediction bias caused by soil physical properties than the
soil spectral correction based on fourth-order polynomials. Despite the increased relative
contribution of random errors, the total bias in terms of the accuracy of the predicted results
was significantly reduced. Therefore, the spectral correction strategy did not introduce
more error sources but only improved the relative contribution of other error factors to
the SOM prediction bias, such as hyperspectral-image-processing uncertainty and field
data acquisition uncertainty [58,59]. Judging from the relative contribution rate of the
soil physical properties to the SOM prediction deviation before and after the spectral
correction, the contribution rate of the SM to the SOM prediction bias decreased the most,
by over 10%, followed by RMSH. The spectral correction method based on polynomials
and XG-Boost reduced the average relative contribution rate of the RMSH at the two sites
by 10% and 14.5%, respectively. Although the declined contribution rate of the SBW to
the SOM prediction bias was the smallest, the reduction exceeded 6%. By comparing
the improvement effects of different input variables on the SOM prediction bias, the
improvement effects of soil physical properties on the SOM content prediction accuracy
ranked as SM > RMSH > SBW, consistent with the order of the spatial heterogeneity of
these three soil physical properties and the order of the sensitivity of soil spectra to them
in the VNIR range. Thus, soil physical properties with strong spatial heterogeneity and a
sensitive spectral response should be prioritized in soil spectral correction.
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4.3. The Potential and Limitations of the Soil Spectral Correction Model

As soil spectral correction methods are designed to address the coupled effects of
surface physical properties on hyperspectral images, they are suitable for the remote-
sensing image processing of various soil chemical composition predictions. Such methods
suppress the sensitivity of spectral data to SM, RMSH, and SBW and reduce the possibility
of SOM prediction results falling into the local optimum. Another advantage is that
determining the empirical relationship of SM, RMSH, and SBW with the hyperspectral soil
reflectance of ZY1-02D satellite spectra improves the generalization ability and application
efficiency of the method. In addition, this study has great potential application value
and is expected to realize the combined application of optical and radar remote sensing
in the estimation of soil physical and chemical properties. Although the soil spectral
correction model can restore most soil “pure spectrum” characteristics, some uncertainties
may remain. The applicability of the proposed method to airborne hyperspectral sensors
or other hyperspectral satellites requires evaluation with more data. In addition, this
experiment only considered the influence of soil properties within 5 cm of the surface layer
on the spectrum, while the spectrum may have different sensing depths for different soil
properties [60]. Even though the spectrum only directly detects SM changes in shallow
soil (from about 0 to 2 cm), this depth also changes under different SBW and RMSH
conditions [20,61]. The vertical heterogeneity of the SM and SBW may be the main factor
causing soil spectral correction errors. Adopting a hierarchical strategy to establish spectral
correction models for soil properties at different depths or assigning different weights to
soil physical properties at different depths may maximize the effectiveness of the model
within the specified depth and range.

4.4. Future Work and Suggested Next Steps

This study, for the first time, used the “pure spectrum” derived from soil spectral
correction, considering SM, RMSH, and SBW, for SOM content prediction and confirmed
its excellent spatiotemporal transferability. The strategy for alleviating the influence of
soil physical properties on spectral coupling may provide a paradigm for remote-sensing-
based soil element content predictions in the future. The soil spectral correction of the
whole hyperspectral image requires real-time high-resolution soil physical parameter data
at the regional scale. The strong sensitivity of synthetic aperture radar remote sensing
to soil physical parameters makes it possible to obtain rich information on soil physical
parameters in practical applications [62]. Future research may combine the advantages of
hyperspectral imaging and radar remote sensing to improve the prediction accuracy of soil
physicochemical parameters [63]. Given the type and dimensional heterogeneity of optical
and radar data, a new link to combine these two data types was provided. Meanwhile,
some interesting new directions have also emerged. Because of the difference in the
imaging time between radar and hyperspectral images, the corresponding surface physical
properties also change, especially SM, which is highly susceptible to weather. Therefore,
combining optical and radar data to eliminate the bias due to the temporal phase may be
the optimal strategy to solve this problem. In addition, the depth perception of optical and
radar remote sensing for soil properties needs further clarification. As radar sensors have
better penetrability than optical sensors, quantifying the vertical heterogeneity of SM and
SBW with radar remote sensing could be the key to further improving the soil spectral
correction accuracy [64,65]. These strategies reduce errors in large-scale soil physical and
chemical parameter surveys to support regional strategic arrangements for sustainable
agricultural development.

5. Conclusions

This study utilized satellite and ground hyperspectral data and soil physical parameter
data to construct two soil spectral correction models based on fourth-order polynomials
and XG-Boost, respectively, to alleviate the coupling effect of soil physical properties on the
pixel spectrum. The performance of the soil spectral correction models and their influence



Agronomy 2024, 14, 1067 19 of 22

on the accuracy and spatiotemporal transferability of the SOM prediction model were
evaluated using data from two sites. The main conclusions are as follows. (1) The soil
pixel spectral reflectance is nonlinearly related to the soil ground spectral reflectance. The
difference in the surface physical properties is the main factor for the deviation in these
two spectral data types. RMSH has the most significant effect on the soil pixel spectrum,
followed by SM and SBW. (2) The fourth-order-polynomial and XG-Boost models have
good soil spectral correction accuracies. The soil spectral correction model based on XG-
Boost has higher accuracy and stronger spatiotemporal transferability, as it considers all
the features to continuously adjust the weight of the tree and prevent the result from falling
into the local optimum. (3) Soil spectral correction significantly alleviates the coupling
effect of soil physical properties on soil pixel spectra, effectively improves the accuracy of
the SOM prediction model, and, more importantly, greatly enhances the spatiotemporal
transferability of the SOM prediction model based on the pixel spectrum. In the future,
more accurate SOM prediction results can be obtained by fully considering more soil
properties. This work provides a new research paradigm for predicting soil property
parameters in other regions.
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