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Abstract: Liquid crystal elastomers (LCEs) are responsive materials that can undergo large reversible
deformations upon exposure to external stimuli, such as electrical and thermal fields. Controlling the
alignment of their liquid crystals mesogens to achieve desired shape changes unlocks a new design
paradigm that is unavailable when using traditional materials. While experimental measurements
can provide valuable insights into their behavior, computational analysis is essential to exploit
their full potential. Accurate simulation is not, however, the end goal; rather, it is the means to
achieve their optimal design. Such design optimization problems are best solved with algorithms
that require gradients, i.e., sensitivities, of the cost and constraint functions with respect to the
design parameters, to efficiently traverse the design space. In this work, a nonlinear LCE model
and adjoint sensitivity analysis are implemented in a scalable and flexible finite element-based open
source framework and integrated into a gradient-based design optimization tool. To display the
versatility of the computational framework, LCE design problems that optimize both the material, i.e.,
liquid crystal orientation, and structural shape to reach a target actuated shapes or maximize energy
absorption are solved. Multiple parameterizations, customized to address fabrication limitations, are
investigated in both 2D and 3D. The case studies are followed by a discussion on the simulation and
design optimization hurdles, as well as potential avenues for improving the robustness of similar
computational frameworks for applications of interest.

Keywords: liquid crystal elastomer; design optimization; finite element analysis; active material;

responsive material; smart material; soft actuation

1. Introduction

Liquid crystal elastomers (LCEs) are a class of stimuli-responsive polymers that can
perform large reversible deformations due to environmental changes (e.g., temperature) or
local stimuli (e.g., focused UV /IR light) by programming the orientation of the liquid crys-
tals [1]. This behavior has benefited several application domains, such as soft actuators [2],
directional leaping [1,3], and origami design [4], among others. Optimizing the placement
and orientation of the liquid crystals (LCs) mesogens within a structure can open the door
to additional innovative functionalities [5-7]. Moreover, these optimized structures can be
fabricated via surface patterning or additive manufacturing, facilitating the exploration
of complex geometries and, consequently, expanding the design space. This work lever-
ages such design freedoms and introduces a computational approach to systematically
optimize the liquid crystal placement and orientation, and the structure shape to achieve
remarkable performances.

The systematic design optimization with responsive materials, often referred to as
active or smart materials, sits at the forefront of both material science and engineering. A
broad spectrum of design tools including data-driven artificial intelligence (Al) techniques
and gradient-based optimization have been developed for this purpose [8-11]. How-
ever, Al methods require abundant data, which is lacking for these responsive structures.
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Moreover, the existing Al literature related to this field focuses primarily on structural
mechanics [12-14]. On the other hand, gradient-based optimization approaches have been
successfully applied to design responsive structures comprised of, for example, shape
memory polymers [15,16], piezoelectric materials [10,17], and LCEs [18,19].

The cornerstone of gradient-based design optimization is sensitivity analysis (SA), i.e.,
the computation of the derivatives of the optimization cost and constraint functions with
respect to its material, geometric, and load parameters [20-23]. These gradients also play a
pivotal role in, for example, perturbation analysis, mesh adaptivity, and uncertainty quan-
tification, to name a few [24-26]. Despite their extensive benefit, SA is rarely performed due
to cumbersome formulations, especially for the nonlinear response that characterizes LCE
structures; see [27-29]. Fortunately, these challenges can be circumvented via automatic
differentiation (AD) tools [30,31]. Notably, the time and effort required to implement AD
has been significantly reduced in the past decade, and nowadays, an extensive catalog of
open source AD libraries for SA is readily available [32-35].

Multiple strategies have been proposed to effectively simulate the stimuli response,
i.e., motion, of active structures [36-39]. It is widely recognized that these simulations
involve the solution of coupled nonlinear partial differential equations (PDEs), which
require specialized strategies to address both numerical and physical instabilities. LCEs are
no different in this regard, as stimuli response predictions must capture the behavior of the
LC mesogens in the material’s architecture (i.e., the LCE anisotropy) [4,40-43]. To model
this phenomena, LCE continuum material models use a scalar- or tensor-order parameter
to quantify the alignment of the LCE mesogens. Such models have been validated for both
small- and large-strain deformations resulting from a variety of loadings, e.g., thermal and
light [44-47].

In this work, we adopt the hyperelastic material model described in [48] to model the
response of LCE materials. We leverage an in-house next generation finite element analysis
code, i.e., Serac , to facilitate the material model implementation effort and benefit from its
high-performance computing (HPC) and AD capabilities. This stands in stark contrast to
commercial analysis software alternatives, where considerable effort would be needed to
accommodate new physics models, let alone the SA [49-53].

To the best of the authors’ knowledge, neither shape optimization nor combined shape
and LC orientation optimization have been investigated for LCEs. Related work relies
on simplified material models that may not adequately capture the intricate response
exhibited by LCE materials [18,19], or explores only two-dimensional LC orientation
optimization [47]. Thus, the primary contributions of this manuscript are the combined
LC orientation and shape optimization of LCE structures in a computational framework
that is amenable to multiple printing technologies (e.g., direct ink write and digital light
processing) employed. Design problems for relevant applications are explored, including
achieving target actuated shapes and maximizing energy absorption. Additionally, we
provide a summary of the current challenges encountered and future work needed to
unleash the full potential of LCE structures.

The remainder of this manuscript is organized as follows. Section 2 describes the non-
linear finite strain LCE model and the finite element analysis for the quasi-static boundary
value problem. The formulations for the LC orientation and shape sensitivity analyses
are summarized in Section 3. The solved orientation and shape optimization problems
of Section 4 demonstrate the versatility of the proposed framework to design 2D and 3D
LCE structures. Section 5 provides remarks regarding current challenges and directions for
future work. Finally, a summary is provided in Section 6.

2. Problem Description

We consider a body B in the undeformed configuration () C R™ for ny; = [2, 3] spatial
dimensions with external boundary I' € R?~1. Complementary boundaries of I that are
subjected to prescribed Dirichlet (essential) and Neumann (natural) boundary conditions
are denoted by I'p and I'y, respectively, as seen in Figure 1.
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Figure 1. Design domain with boundary conditions (left) and a zoomed in region that shows the
orientation of the LC in the unactuated /nematic (center) and actuated/isotropic (right) states.

Without loss of generality, we adopt the experimentally validated LCE material model
used in [48]. The strain energy density for the LCE hyperelastic material is

P(F) = %(tr(E))2 +u(E-E) - %[3(50 —s())(3n"n—1)-E (1)

where A and y are the first and second Lamé coefficients. These coefficients can be calculated

from Young’s modulus £ and the Poisson ratio v via A = (1—&-1/)5(+21/) and y = ﬁ,

respectively [54] . The Green-Lagrange strain tensor E = % (FF" —1I) is a function of the
deformation gradient F = I + g—;‘(, where I is the identity tensor, u is the displacement
vector, and X € () is the location of a material particle in the undeformed configuration.
The first and second terms on the right-hand side of Equation (1) model an isotropic Saint
Venant material, while the third term models the anisotropic nematic order effect. The
parameter 8 defines the degree of anisotropy, while S and S(t) define the initial and
instantaneous scalar-order parameters, and f is the pseudo time as described in Section 2.3.
The unit vector n indicates the alignment of the LCs embedded in the elastomer, i.e., the LC
orientation, cf. Figure 1.

The initial order parameter S° > 0 indicates the highest possible level of ordering,
while S(t) € [0,S°] models the transition from the unactuated /nematic state S(t) = 0 to
the actuated /isotropic state S(t) = S°, cf. Figure 1. Normally, S is controlled by an external
actuation mechanism, e.g., thermal, cf. [36,46]. Without loss of generality, we have omitted
such dependence, i.e., S evolves by a prescribed update strategy.

Under our hyperelastic material assumption, the First Piola stress is defined as

P:Pg—lg = F|Atr(E)I + 2uE — ;B(SO—S(t))(BnTn—I)}, )

and the symmetric Cauchy stress ¢ as
o =] 'PF, ®)

where | = det(F).

In our examples, we consider two stress-free configurations. Our interpretation of the
energy 1 differs from [48]. It is our view that the stress-free LCE structure is pre-strained
when manufactured and, as a response to a stimulus, the material transitions to the strain-
free state when reaching the isotropic configuration. Hence, the isotropic, i.e., the actuated,
configuration should be used as the underformed reference configuration instead of the
nematic, i.e., unactuated, configuration. In the fully nematic configuration, S(t) = 0, and
in the fully isotropic configuration, S(t) = S0. In the latter, zero stress, i.e., P = 0, implies
E = 0. In the former, zero stress implies that we have a nonzero strain E = 52—“;'[0 (3nTn —1I).
Notably, as the stress-free nematic configuration transitions to the stress-free isotropic
configuration, it axially contracts — ’3750 in the n direction, and expands *%0 in the directions
perpendicular to n. It neither shears nor changes volume.
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2.1. Design Parameterization

In the optimization problems considered here, the LCE structure design is param-
eterized by a finite element mesh over the domain () via the 1, design parameters
p = lpup2---, pnp]T that describe the orientation of the LC mesogens n and/or the
shape via perturbations of the mesh node coordinates AX. The layer-by-layer additive
manufacturing of the LCE structure is such that the mesogen orientation in each element
is restricted to the X — Y principal plane. This simplification means that the orientation
is defined by the element inclination angle «, i.e., n = (cos(a),sin(a),0), cf. Figure 1.
Furthermore, the shape optimization method parameterizes the topology, preserving shape
changes as described in [55]. Note that despite this manuscript focusing on LC phases, the
design parameterization can be formulated such that it appropriately simulates cholesteric
(i.e., chiral nematic) or blue (double twist cylinders packed in cubic lattices) phases.

To formulate a well-posed optimization problem, the design fields are filtered to
prevent highly oscillatory orientations and complex shapes [55,56]. Thus, we optimize the
parameters p, but we model the structure using the filtered parameters j that define the
filtered orientation 7 and shape perturbations AX.

2.2. Filter Analysis

We implement an energy filter which defines the filtered design field f as the solution
of a PDE defined on () [57]. The weak form of this governing equation seeks § € W

such that 2L(V5)
REF =) — / 42 P (p — Q, = 0. 4
)= [ (Vo P TE w0 (5= p) Jan, =0 @
where the parameter r implicitly defines the smoothness of i relative to p, with larger
values providing more smoothness. The “energy”  is defined differently for LC orientation
and shape parameters. For LC orientation, { = V& - V&, and for the shape perturbations,

= tr(Vﬁ\}Z)/(det(VAﬂf))l/”d. For LC orientation parameters, v € W = H', while for
shape parameters

veW={pecH(Q): H(X)=AX(X) =0 for X € I'3¥}. (5)

Here , T4X represents the surface where the Dirichlet conditions are applied for the shape
parameters. For shape optimization, AX is interpolated from the nodal values via the
usual Lagrangian finite element basis functions [55]. For LC orientation, « and & are
parameterized to be piecewise uniform over the elements, i.e., a, & € L2. However, W
requires a and & to be smooth to compute their spatial gradients, i.e., a,& € H'. To resolve
this inconsistency, a is projected to H! to solve Equation (4) for the filtered design field
& € H', which is subsequently projected back to L2.

2.3. LCE Forward Analysis
In the LCE simulations, we evaluate the displacement u € H that solves

RICE () — /Q Vw: P(Vu) dQ =0, ©)

for all w € H, where
H={uc H(Q):u(X)=0for X cTp}. @)

Without loss of generality, we assume homogeneous Dirichlet boundary conditions on
I'p and null applied body and surface traction. Note that the boundary regions where
the Dirichlet conditions are applied for the filter and LCE analyses generally differ. The
material response is obtained as the order parameter S(t) linearly decreases such that

S(t) = S° (1 — ﬁ) , where 5y is the total simulation time, i.e., the pseudo time t € [0, t0x].
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The nonlinear Equation (6) is solved using the iterative Newton-Raphson method.

In this method, if the residual of the current solution guess u is not converged, i.e., if

|RECE(u)| > eg for a small tolerance eg, then the next guess becomes u = u+Au, where Au
solves the linear equation

JRLCE (u)

— 2 Au=—RE(y 8

o () ®)

in which a%iCE is the tangent stiffness matrix that is computed via AD. This procedure is

performed for all pseudo time steps. Sufficiently small time steps are used such that the

Newton algorithm converges in just a few iterations.

3. Optimization Framework

Upon solving Equation (6) to the terminal time f,,,r, we can evaluate any num-
ber of the performance metrics (e.g., total energy absorbed, maximum stress) via the
response functional

F=Gup) = /QH(u, Vu, p)dQ, 9

where I is the general integrand function. Such metrics are used to define the optimization
cost and constraint functions.

A graph that describes the forward analysis needed to compute the filtered design
parameters, displacement, and performance metrics is illustrated in Figure 2. The block on
the right encapsulates the transient Newton solver. The design parameters p are used to
solve the filter equation REF (5, p) = 0 and obtain their smoothed versions 5, which are
then used to define the LC orientation and/or geometry of the domain in the LCE analysis
RECE(u, p) = 0 to compute u. Subsequently, we calculate the cost and constraint functions

F=G(up).

-
P ) Newton Solver
‘ 4 ; N
—-—_—E =N \
Y u

i =u+Au
(=
:

[ RICE(u,p) =0 J Save u iyes ‘

N
e ~

Figure 2. Graph for the forward analysis including the Newton solver block to compute the LCE

<«

structure’s cost and constraint functions.

We traverse the graph in Figure 2 backwards to compute the gradients needed for
optimization via the adjoint method, cf. Figure 3. The adjoint method is used due to its
computational efficiency for the design problems considered here since the number of
response functions is far less than the number of design parameters; for details, the reader
is referred to [21,22,58].

In the optimization problem derivations, we reintroduce the cost or constraint response
function as

F=G(u@), p), (10)
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to denote the displacement’s u dependencies on the filtered design, §i. We derive the
sensitivities with respect to the filtered design parameters

dF _9G  9G du

= =5z t 3 5=- 11
dp;  0p;  ou Ip; an

To resolve the unknown derlvahve p , we include all dependencies and express Equation (6) as

R*E(u(p), p) = 0. (12)
Differentiating Equation (12), we obtain

aRLCE aRLCE aﬁ

Ipi dap  Ip;

(13)
Multiplying this by the adjoint vector A} g, adding it to Equation (11) and rearranging yields

(14)

AF _ (3G | ORI\ ou oG 1 ORLCE
dp;  \ou tee! w )op;  ap P ap

The unknown derivative 51{ is annihilated from the above by solving the following adjoint
problem for the heretofore arbitrary Arcr:

ORLCE T oG T
( % ) /\LCEI(au> . (15)

As such, the sensitivity (Equation (11)) reduces to

dF  9G T ORLCE
= = 3= T~ . 16
dp;  op; °F op; (16)

Note that the -2 9 derivatives imply either LC orientation (i.e., ag) or shape (i.e., aX)

derivatives. Matenal (i.e., LC orientation) derivatives are relatively easy to compute

as opposed to shape derivatives However, this difference is moot, as we compute the

G 9g aR
derivatives 57, a5, an nd

usmg AD.
Next, we derive the sens1t1v1t1es with respect to the unfiltered design field p, i.e.,

0
dF af[ OF o

i + = . 17
dp; pi  Op dp; 17)

The explicit dependency g—; is eliminated by construction since the performance metrics
are only described by p. Following the above steps, we express the filter residual in
Equation (4) as

R (B(p),p) =0, (18)

to denote the filtered design’s j dependence on the parameters p. Differentiating the filter
Equation (18) reveals
OREE OREE aj
api op dpi
Multiplying this by the adjoint vector Agr, adding it to Equation (17) and rearranging
results in

(19)

EF ~ EF
dF (8}" - OR )E)p - OR 0)

7" 7+A« T .
dpl- op EF op ) dp; EF op;
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In this case, the unknown derivative % is annihilated from the above by solving a second

adjoint problem for the hereto arbitrary Agr

OREF )T (M)T
Aer=— (22 21
( p; EE pi @)

whereupon the design sensitivity reads

dF OREF
T )
1 1
Here, the derivatives % and % are computed via AD.

)

)

OREF\ aF\" aAH OREF
—_— A EF = — | == - —= AT e
p op dp - 1N0D

oRECE\ " AN GRS
i ALCE:*<7> =5 ] g i
/ag\< i >
"/ 1

Figure 3. Graph for the adjoint sensitivity analysis.

4. Case Studies

We now optimize LC orientation and shape to design LCE structures to achieve
the desired deformations and maximal energy absorption, and showcase the proposed
methodology’s versatility and robustness across applications. For the sake of consistency
with the literature, we henceforth refer to the isotropic state as the actuated configuration,
and the nematic state as the unactuated configuration.

The initial designs and their applied boundary conditions for all cases are specified
below. Relevant material and analysis parameters for all examples are noted in Table 1.
These material properties and parameters were derived from experimental data.

The forward and adjoint analyses are solved by the 3D implicit nonlinear multi-physics
finite element code Serac ([35]) that heavily leverages a C++ library for Modular Finite
Element Methods, MFEM (Version 4.6 [34]). Conformal 2D meshes are composed of
either four-node quadrilateral or three-node triangular elements, and 3D meshes of eight-
node hexahedra elements. We interpolate the unknowns at any material point X using
Lagrangian interpolation functions. The direct linear solver Strumpack [59] is used to solve
the Newton update and adjoint problems. Serac exploits AD to compute the necessary
derivatives mentioned above. Hence, our lean implementation requires only defining the
stress tensor in Equation (3), and the integrands in Equations (4), (6) and (9).
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Table 1. Material properties and other parameters for LCE analysis.

Parameter Value
Nematic-isotropic coupling parameter, 8 5.75 x 10° [N/m?]
Elastic modulus, £ 9.34 x 10° [N/m?]
Poisson’s ratio, v 0.48
Initial order parameter, S0 0.40
Total actuation time, ;45 1.0
Newton tolerance, eg 1.0x107°

The orientation field « is piecewise uniform over the finite elements and the element
angle orientations «; are the design parameters subject to the limits &,,;, = —90° and
&max = 90°. This design field is filtered according to Equation (4) using only homogeneous
Neumann boundary conditions to obtain &, which is also piecewise uniform over the mesh
(after performing the appropriate projections discussed above). Hence, each element has its
own orientation &;. Similarly, the shape parameters AX are filtered by solving Equation (4)
with its corresponding energy function to obtain AX. Lower and upper limits AX,;,;;, and
AXiay for the shape parameters AX and the boundary I'3X (see Equation (5)) are provided
below per case study.

The nonlinear programming Method of Moving Asymptotes (MMA, [60]) algorithm
is used to solve the optimization problems. In the optimization, convergence is achieved
when the change in value of the cost function for three consecutive iterations is less than
1 x 1073. The Livermore Design Optimization code LiDO (Version 0.2.0, [61]) is used to
define the design parameterizations, access the optimization solvers, and automatically
traverse the graphs of Figures 2 and 3.

4.1. Lc Orientation Optimization of Soft Gripper

In this first example, we optimize the LC orientation of an LCE soft gripper to obtain a
desired shape change when actuated, cf. the unactuated and actuated configurations in
Figure 4. Using domain symmetry, we assign () to the rectangular unactuated configuration
of size L = 50 [mm] by H = 5 [mm], which is clamped over the middle fifth of the left edge.
The order parameter is then decreased to zero to obtain the target actuated configuration
such that the displacement of the bottom edge is u} (X) = —0.50 X3 /L - e,.

Unactuated Actuated , .
state state 7 Fixed displacement T~

...... I'; (bottom edge) '~

© = uj (target displacement)

Figure 4. Soft gripper LC orientation design: (left ) LCE gripper in both the initially unactuated
(nematic) and actuated (isotropic) states; and (right) design domain and desired deformation.

To obtain this target displacement, we minimize the root mean square discrepancy
between the actuated LCE gripper displacement u along the bottom edge I'; and the target
displacement uy, over I'¢, i.e.,

min T = / | — u[2dT
o« T; (23)

X1, 82, ey Ky € (@min, ®max),

Figure 5 shows the evolution of the design, i.e., LC orientation and their unactuated
and actuated configurations at optimization iterations D;; = [1,5,15,30,50]. As the opti-
mization progresses, the orientation of the LCs changes from an uniform constant field
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of « = 0.0 to a spatially varying field characterized by a positive angle over most of the
upper region, which is approximately reflected over the lower region. Clearly, the opti-
mization produces the desired shape. The optimization converges after 50 iterations, and
the discrepancy 7 reduces from its initial normalized value of 1.0 to 0.0015.

,Dn = 1 Dit = 5 Dn = 15
-
63.0°
[ 1 Unactuated Dy = 30 Dyt = 50 &(x)
[  Actuated
—28.6°
Y
T » | 4
X — —

Figure 5. Designs corresponding to optimization iterates D;; = [1, 5,15, 30, 50] showing LC orientation
(colored horizontal strip), unactuated (light grey) and actuated (dark gray) configurations.

4.2. Shape Optimization of a Leaping LCE Strip

In the second problem, we design a leaping structure via shape optimization, rather
than LC orientation optimization. It uses the same design domain and boundary condi-
tions as the previous example. However, here, the domain contains regions wherein the
LCs orientation is either 90° or 0°, cf. Figure 6, and we seek a bell-curve displacement
uy(X) = 20.0/(1.0 + e(X1=L/2)?/200)) . ¢) over T;. The initial design assigns /i, = 1.5,
hy =2.0,1; =5.0,and I, = 4.5. In the optimization, the shapes of the material interfaces
are optimized; the outer boundary is fixed, i.e., F%X = dQ). Additionally, the amount of
material of each phase is also fixed. The optimization problem reads:

min  T= [ |u—u}|?dl
AX r

such that ¢ = Vi _ 1.0<0 (24)

ZL

0
VL
AXq,AX>, ..., AXandes S [AXminl AXmax} .

The constraint g1 ensures that the volume of the material regions with angles at 90°, V,
remains the same through the optimization, i.e.,, V, = Vj)_, where Vj)_ is the initial volume of
this region. The lower and upper limits are defined as AX,,;;, = —2.0 and AX 5 = +2.0.

la/2 I I l/2 a=90.0°
A Tt T am = 0.0°
ho j: || LI | I | I
v = - +(bottom edge)
hy F— X* - — w} (target displacement)

Figure 6. Initial design of leaping structure with two distinct LC orientation regions and its desired
deformation.
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Snapshots of the design at iterates D;; on the left side of Figure 7 show noticeable
shape variations that favor more LC mesogens oriented at 0.0° near the center of the
bottom edge, i.e., the bottom region thickens in a nonuniform manner. The shapes of the
top rectangles change independently to further optimize actuation performance, i.e., they
grow near the inflection points of I'; to aid in generating the desired deformation. The
undeformed and actuated LCE strip configurations for the initial and shape optimized
designs shown on the right side of Figure 7 clearly illustrate that controlled shape changes
of the material interface can generate considerable actuation response. This example
also demonstrates how the optimization can accommodate fabrication constraints, like
restricted LC orientation choices, while still leveraging the design freedom offered by 3D
printing technologies.

Design evolution Actuation evolution
Dy =1 X
Dit = 15
Dit = 30

Figure 7. (Left) Snapshots of the evolution of leaping structure colored by angle alignment as
described in Figure 6; and (right) their unactuated and actuated configurations in light gray and dark
gray, respectively.

4.3. LC Orientation and Shape Optimization for Energy Absorbing Lattice Structures

In this example, we design an LCE lattice structure, optimizing both its LC orientation
and shape. Unlike the previous example where the domain geometry () was fixed and
only the material interfaces were shape optimized, here, the boundary of the lattice morphs
concurrently with the orientation angle throughout the optimization.

We consider the two-dimensional representation of the log pile lattice structure illus-
trated in Figure 8. Only a quarter of the 3 x 3 cell domain with length [ = 15 [mm] and
thickness ¢ = 2.0 [mm] is simulated. Rollers along the left and bottom boundaries are ap-
plied to enforce domain symmetry in the analysis; and rollers along all external boundaries
are applied to the shape filter (i.e., I'¥ in Equation (5)) to limit the shape changes within
a confined subregion in the optimization. The LC orientation and shape optimization
maximizes the energy absorbed by the lattice in the actuated state while maintaining a
constant volume, i.e.,

max‘I’:min—‘I’:—/ PpdQ)
o, AX o, AX Q(X)

such that g1 = % -10<0 (25)

K1, K2 ey By € [“minr “mux]/
AX1,AXp, . AXop 0 € [AX in, AXmax)-
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The strain energy density ¢ is defined in Equation (1), V is the volume of the evolving
design, and V? is the volume of the initial design. Both the LC orientation and shape
design parameters are filtered as explained above. The lower and upper limits of the shape
parameters are AX,,;, = —1.125, and AX;5x = +1.125, respectively.

— Fixed displacement t, X

in normal direction Analysis boundary conditions for u Shape optimization boundary conditions for AX

Figure 8. A quarter of the 3 x 3 LCE lattice design domain (left) is simulated. The onsets at the center
and right depict the boundary conditions for the analysis for # and shape perturbation for AX.

We provide designs of selected optimization iterates D;; in Figure 9 to show the con-
current evolution of the LC orientation and domain shape. A relatively uniform connector
thickness is preserved despite not being a restriction of the shape parameterization, and
curved connectors replace the initially straight ones. The LC orientation varies from its
lower to the upper limits across some of the connectors.

Dit D;: = 100

Figure 9. Evolution of lattice structure design. The LC orientation and domain shape are optimized
concurrently.

Figure 10 displays the initial and optimized structures in their unactuated and actuated
states. Note that restricting shape changes to the provided upper and lower limits was
necessary to prevent self contact between the connectors. Certainly, this class of applications
would benefit from including contact in the analysis as discussed in more detail in Section 5.
Nonetheless, this optimization provides an optimal design that can absorb two orders of
magnitude more energy (i.e., ¥|p,—100 = 117.1 ¥|p,—1) compared to the initial design.
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oY

’ ‘ l:l Unactuated

- Actuated

Initial design LC orientation and shape optimized design

Figure 10. Initial (left) and optimized (right) lattice structures in the unactuated and actuated states.

4.4. Actuation-Driven Compliant Mechanism Design Optimization

Designing compliant mechanisms that invert displacement/force with LCE structures
can offer advantages in terms of adaptability, energy absorption, and customization, among
others. In this final example, we optimize the LC orientation and shape of the three-
dimensional structure depicted in Figure 11. A quarter of the design domain is simulated
due to domain symmetry. This geometry is described by [ = 15.0 [mm], { = 1.5 [mm],
6 = 55.0°, and an out-of-plane thickness of 3.0 [mm]. The design problem minimizes the

distance between the surfaces I'y; and I's (cf. bottom left of Figure 11) while maintaining a
constant volume, i.e.,

i = X) — u(X +ley)[2dT
min 7 rTﬂlu( ) —u(X +ley)|
vV 2
such that g1 = (W — 1.0) <0 (26)

K1, 02, wees Kty S [aminl amax]/
AXq,AX>, ..., AX3nnDdcs S [AXmin/ AXmux]-

The lower and upper limits for the shape changes are AX,;, = —1.725, and AX 5 = 1.725.

DO O 00
A A Yw

Analysis boundary conditions for u

Fixed
displacement

1_‘32

Fixed
displacement in
normal direction

@9

N
N
N

Shape optimization boundary conditions for AX

Figure 11. Compliant mechanism design problem: planes of symmetry in 3D domain (top left),
cross-section (bottom left), and onsets detailing the boundary conditions for the analysis for u (top
right) and shape perturbation for AX (bottom right).
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A smooth evolution of the design is observed in the plot of Figure 12, which illustrates
iterates in their unactuated states and their LC orientations. The initial and optimized
designs are presented at the bottom of Figure 12. In the optimized design, the top and
bottom legs curve in the Z-direction, while the inclined legs near I';; curve in the XY-plane.
In addition, the horizontal leg at the center is tapered inwards. Modest shape changes
are observed in the remaining sections. The LC orientation field aids in the actuation by
defining adjacent regions with drastically different alignments.

(o, x) 91 (AX)
A A
— (@, AX)
1.00 ~& — g(AX) 1,
0.90 +
—
415
0.70 + —
. 110
0.50 + Los
0.35 t } } } } } | } >
10 20 30 40 50 60 70 80 Dit

63.1°
i &(X)
~74.5°

LC orientation and
shape optimized design

Initial desin
Figure 12. Evolution of the objective and constraint for the compliant mechanism design problem.

The actuated design configurations of Figure 13 clearly demonstrate the enhanced
performance of the LC orientation and shape optimized design. Note that this is also
the case when compared to an LC orientation-only optimized design, i.e., without shape
optimization. The normalized distance measure of the LC orientation-only design is
T = 0.486; it reduces to T = 0.381 for the combined LC orientation and shape design. This
final example underscores the superior performance by expanding the design space to
include both LC orientation and shape (~22% reduction in distance between the surfaces
I's1 and I'sp) instead of only optimizing the LC orientation (~10% reduction). Furthermore,
it highlights our optimization framework’s capacity to effectively solve such problems.

Unactuated P
(watermarked) .

- Actuated
(solid)

LC orientation and shape LC orientation optimized

Initial design optimized design design

Figure 13. Unactuated and actuated states for initial (left), LC orientation and shape optimal (center),
and LC orientation only optimal (right) designs.
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5. Discussion and Future Work

The gradient-based optimization for active LCE (and similar active material) struc-

tures is a multidisciplinary challenge. Indeed, the case studies presented above cover
a range of representative applications but represent only a fraction of them. To effec-
tively solve computational design optimization problems with more complex geometries,
more pronounced actuations, and more intricate optimization formulations, the following
should be considered regarding the material model, simulation, sensitivity analysis, and
optimization methodology.

The constitutive model selection can be a difficult task for the simulation of LCEs,
and responsive materials in general. Advanced applications such as controlled loco-
motion [1,3] require intricate material models (e.g., mutiscale modeling [52,62,63]) to
accurately predict the LCE motion. These may require heat transfer simulations to
design thermally actuated LCEs, for example. Furthermore, given the diverse stim-
uli that LCEs respond to, the constitutive model employed must accurately capture
their multi-stimuli response in optimization scenarios where designs are influenced
by more than one stimulus. Other physical phenomena such as rate effects may
also need to be considered, e.g., high strain rate compression/impact. Fortunately,
emerging Al-based trends can ease some of this burden. For example, machine
learning can help characterize LCE materials and provide more accurate constitutive
models [64]. Progress has been made in physics-informed neural networks (PINNs)
for hyperelastic materials [65,66], and strategies to generate models that obey the
laws of physics are being explored under the umbrella of constitutive artificial neural
networks (CANN:S, [67,68]). Once open questions regarding data quality and diversity
for multi-physics responses are resolved, future developments could integrate classical
physics-based methods with the mentioned emerging machine learning methods to
more accurately simulate these complex materials.

Simulation challenges associated with the robust numerical analysis of complex ge-
ometries, nontrivial time-dependent boundary and interface conditions, including
contact, and parameterized material properties and shapes, need to be addressed.
Appropriate linear and nonlinear solvers, and preconditioning strategies must be
selected as well as stabilization terms added to avoid undesirable pathologies, e.g.,
spurious oscillations, and locking [69,70]. Existing literature directed towards this
issue for LCEs or similar responsive structures is lacking, except in the context of
simplified benchmarks [52].

Implementing adjoint sensitivity analysis that can accommodate the dynamic nature
of advanced systems (e.g., controlled actuation in time of an LCE structure) introduces
another challenge, notably efficient check-pointing schemes [71]. Three-dimensional
design applications characterized by extensive arrays of design parameters call for
approaches that transcend rudimentary high-level programming or reliance on com-
mercial software [72]. Implementations must use alternative HPC simulation and
design libraries and AD tools to solve more complex engineering problems.
Alternative shape optimization methodologies using the level set method (LSM, [73-75])
allow for topological changes and thus, potentially generate better performing de-
signs. The increased design freedom of LSMs is also favorable for designing systems
for which a suitable initial design is unknown, or organic geometries are expected
(e.g., biomimicry engineering). For LCE structures, the more flexible parameteriza-
tion offered by LSMs can accommodate additional manufacturing constraints such
as aligning the LC fibers with the printing direction. However, considerable addi-
tional effort both in the analysis and optimization is needed to guarantee a robust
framework [76-78].

6. Conclusions

We propose a gradient-based framework to optimize the liquid crystal orientation and

shape of liquid crystal elastomer structures. To simulate the structure motion when it is
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exposed to external stimuli, we combined nonlinear kinematics material and models with
a quasi static finite element analysis. A well-posed optimization problem is formulated by
using an energy filter to eliminate highly oscillatory design fields. We presented the neces-
sary sensitivity analyses and designed two- and three-dimensional structures to achieve
the desired target shape changes and maximal strain energy. Optimal designs performing
between one to two orders of magnitude better than the initial designs were obtained
when using combined liquid crystal orientation and shape optimization. Finally, we have
provided a discussion summarizing the challenges encountered, as well as considerations
for advanced applications and future work.
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