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Abstract: Predicting urban morphology based on local attributes is an important issue in urban science
research. The deep generative models represented by generative adversarial network (GAN) models
have achieved impressive results in this area. However, in such methods, the urban morphology
is assumed to follow a specific probability distribution and be able to directly approximate the
distribution via GAN models, which is not a realistic strategy. As demonstrated by the score-
based model, a better strategy is to learn the gradient of the probability distribution and implicitly
approximate the distribution. Therefore, in this paper, an urban morphology prediction method
based on the conditional diffusion model is proposed. Implementing this approach results in the
decomposition of the attribute-based urban morphology prediction task into two subproblems:
estimating the gradient of the conditional distribution, and gradient-based sampling. During the
training stage, the gradient of the conditional distribution is approximated by using a conditional
diffusion model to predict the noise added to the original urban morphology. In the generation
stage, the corresponding conditional distribution is parameterized based on the noise predicted
by the conditional diffusion model, and the final prediction result is generated through iterative
sampling. The experimental results showed that compared with GAN-based methods, our method
demonstrated improvements of 5.5%, 5.9%, and 13.2% in the metrics of low-level pixel features,
shallow structural features, and deep structural features, respectively.

Keywords: urban morphology prediction; conditional diffusion model; gradient of data distribution;
gradient-based sampling

1. Introduction

Urban development affects many aspects of human society, including climate change,
economic development, population migration, and land use [1,2]. Accurately predicting
urban morphology based on local attributes is important for exploring urban development
principles [3,4]. Urban morphology is mainly influenced by spatial and social attributes,
with spatial attributes mainly including land and rivers and social attributes mainly includ-
ing population and the economy. Urban morphology reflects the complex characteristics of
urban development [5], including the fractal dimension, polycentric shape, and scaling law.
The accurate prediction of urban morphology has several benefits in urban science research,
including the development of more rational land-use policies [6,7] and exploration of the
dynamic patterns of urban growth.

Currently, generative models based on deep neural networks have achieved remark-
able results in various generative tasks [8,9]. As a result, some researchers have used deep
generative models for predicting urban morphology [10,11]. Such methods represented
by MetroGAN [10] generally assume that urban morphology follows a specific probability
distribution and that this distribution can be directly approximated by generative adver-
sarial network (GAN) models to generate prediction results that match the characteristics
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of the real urban morphology. In addition, some researchers have also modeled urban
environmental patterns based on convolutional neural networks [12].

However, it is unrealistic to assume that complex and diverse urban morphology
is a probability distribution that can be directly approximated. As indicated by score-
based models, a better strategy is to approximate the gradient related to the probability
distribution and implicitly represent the distribution through the gradient. Based on this
viewpoint, an urban morphology prediction method based on the condition diffusion
model [13–15] is proposed in this paper. In this approach, the attribute-based urban
morphology prediction task is decomposed into two subproblems: estimating the gradient
of the condition distribution, and gradient-based sampling. Predicting urban morphology
based on attributes is naturally modeled as a condition distribution. During the training
stage, under the constraints of guiding conditions, the conditional diffusion model predicts
the noise added to the original urban morphology, thereby approximating the gradient
of the condition distribution under different noise levels [16,17]. In the generation stage,
random sampling is taken of the standard Gaussian distribution as the initial value of the
prediction result. The corresponding condition distribution is parameterized based on the
noise predicted by the conditional diffusion model. The gradient-based annealing sampling
method is used to iteratively update the prediction result, moving it toward the condition
distribution without noise and ultimately generating a high-quality prediction result.

In this paper, the attribute-based urban morphology prediction task is decomposed
into two subproblems: estimation of the gradient of the condition distribution, and gradient-
based sampling. The contributions are as follows:

(1) Assuming that the urban morphology follows a certain probability distribution, the
attribute-based urban morphology prediction task is modeled as a condition distribu-
tion. By implicitly approximating the condition distribution through a conditional
diffusion model, iterative sampling is used to achieve urban morphology prediction
under given attributes.

(2) The conditional diffusion model learns the gradient of the condition distribution to be
approximated by predicting the noise added to the original urban morphology, and
then implicitly represents the condition distribution through the gradient. By combin-
ing gradient-based annealing sampling, high-quality urban morphology prediction
results can be generated.

(3) The experimental results showed that compared with urban morphology prediction
methods based on GAN models, the method proposed in this paper achieved im-
provements of 5.5%, 5.9%, and 13.2% in the low-level pixel feature, shallow structural
feature, and deep structural feature metrics, respectively.

2. Related Work

Early methods for predicting urban morphology were mainly based on the statistical
correlation of spatial variables. With the advent of deep generative models, researchers
have assumed that urban morphology follows a specific probability distribution and have
used GAN-based models to directly approximate this distribution. The trained model
samples an initial value from a known prior distribution and maps it to the prediction
result. In this section, a brief overview of these related works is provided.

2.1. Statistical-Based Methods

Traditional prediction methods are mainly based on statistics and spatial interactions.
These methods can be divided into three categories according to their underlying theories,
processing units, and modeling objectives [18]: land use and traffic models (LUTs) [19,20],
cellular automata-based models [21,22], and agent-based models [23]. These methods can
be used to simulate the dynamic evolution of the urban economy or urban land based on
the statistical correlation of the spatial independent variables.

LUT models link traffic and land use distributions to specific economic activities
according to general equilibrium theory [24]. This type of model uses a gravitational
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model to spatially distribute socioeconomic activities and simulate the evolution of urban
morphology. In ref. [20], classical LUT models were systematically reviewed, and the
main drawbacks of such methods, including excessive spatial aggregation, over-reliance on
static equilibrium assumptions, and reliance on a four-stage travel demand model, were
highlighted.

The cellular automata-based model (CA-based model) is widely used for modeling
urban land use. The CA-based model is based on self-organization theory, which divides
the study area into grid cells, each of which interacts with its surrounding grid cells
according to the same rules, thus simulating the dynamic evolution of the city in time and
space. Neighborhood rules and transfer rules are two key parts of CA-based models and
have a fundamental impact on the performance of CA-based models [25,26]. Regarding
the linear cellular automata model, which cannot reflect the spatiotemporal heterogeneity
of transfer rules, due to the limitation of fixed coefficients, Ref. [27] proposed a variable
weight cellular automata model, which can adapt to the spatiotemporal heterogeneity of
the transfer rules by incorporating genetic algorithms into the linear cellular automata
model to obtain the variable weights. Ref. [28] proposed a probabilistic-based cellular
automata model, in which the state transfer of the grid cells is based on the combined
probabilities of the different components, rather than on fixed rules.

In agent-based modeling [29], a utility function is constructed based on simple rules,
and the target behavior of agents is modeled to construct a flexible framework for incor-
porating social activities into the model. Ref. [30] enumerated the main challenges faced
by agent-based models when applied to geospatial simulations through a real case study
in London and concluded that agent-based models are ambiguous and relatively arbi-
trary. A comprehensive review of multi-agent systems applied to land use and land cover
change modeling was presented in ref. [31], where the authors highlighted the potential
advantages, limitations, and major research challenges of such models.

However, the above methods based on statistical and spatial interactions generally
have two problems. One issue is that it is difficult to obtain the required statistical data on
spatial variables for relatively backwards urban areas [32], and the other problem is that the
large amount of existing remote sensing data cannot be effectively utilized for expansion.

2.2. Gan-Based Methods

In GAN-based methods, urban morphology is generally assumed to obey a certain
probability distribution, which can be directly approximated by the GAN models in the
process of fitting the training data. Additionally, new samples can be generated as pre-
diction results after training. Ref. [32] proposed, for the first time, urban morphology
prediction based on a GAN model (CityGAN). The method uses an unconditional GAN,
which samples initial values from a known prior distribution, to map them onto new
samples obeying the model-approximating distribution as prediction results. This method
is highly stochastic, cannot quantitatively assess the quality of the prediction results, and
lacks constraint control.

Ref. [11] improved upon the work of CityGAN by adding population images and
luminosity images as inputs to the GAN, treating urban morphology prediction as a domain
transfer problem. In addition, the authors added a water mask geographical constraint
module to the model, which further guided the training process of the model. Ref. [10]
(MetroGAN) improved the model architecture of ref. [11] in two ways. One was to design
the decoder module of the generator as a growth structure, gradually generating high-
resolution prediction results after generating low-resolution prediction results. The second
was to design the discriminator as a corresponding growth structure. These improvements
made the training of the model more stable and generated higher quality prediction results.

To predict land use and land cover changes, a GAN-based prediction model was
proposed in ref. [33]. This model uses image-to-image GAN and an attention structure
to predict future changes in land use and land cover by using multi-scale local spatial
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information. It could achieve accurate prediction results in both short-term and long-term
tests.

Ref. [34] proposed an environment-driven urban design method based on a GAN
model as an alternative to time-consuming numerical simulation methods. Real-time
optimization can be performed during the design process of urban forms to reduce the
negative impact on the outdoor environment. Compared with numerical simulation-based
methods, this method has a significant acceleration effect. Ref. [35] used a GAN model to
predict the development of emerging metropolitan cities. A small-scale training dataset
was constructed based on historical satellite images of Doha, and housing dispersion
was analyzed based on the prediction results of urban development using a GAN model.
Regarding the impact of urban morphology evolution on urban traffic status, Ref. [36]
proposed an estimation method based on a spatiotemporal GAN model, which can predict
the impact of planning implementation on urban traffic status given an urban development
plan and historical observation data of road networks. The model is based on a conditional
GAN model, which takes various travel demands as the input conditions, while modeling
the time dependence of traffic flow [37–39] at different times of the day using a self-
attention mechanism.

3. Methodology
3.1. Problem Formalization

To introduce the conditional diffusion model into the task of urban morphology
prediction, in this paper, urban morphology is considered a probability distribution in
a high-dimensional space. Therefore, attribute-based urban morphology prediction is
modeled as a conditional distribution. The gradient of the condition distribution is approx-
imated by predicting noise through a condition diffusion model, which is then combined
with a gradient-based annealing sampling method to generate an urban morphology map
under given attributes.

Specifically, in this paper, an urban built-up area image (usually used as a proxy
for urban morphology) IT ∈ RH×W is taken as the generation target of the conditional
diffusion model. The local attributes of an urban area can be divided into geographic
attributes and socioeconomic attributes. In this paper, digital elevation model (DEM)
images Id ∈ RH×W and water area images Iw ∈ RH×W are selected as representative of
geographic attributes. The two types of attributes can affect the geographic distribution of
an urban area. A nighttime lights (NTL) image In ∈ RH×W was selected as a representative
of socioeconomic attribute. This type of attribute can affect the degree of agglomeration of
an urban area.

The conditional diffusion model approximates the gradient of the conditional dis-
tribution p(IT |IC) by predicting noise, where IC = g(Id, Iw, In) represents the guidance
condition generated by aggregating Id, Iw, and In. In this paper, the effects of two types
of aggregation methods on the generation results of a conditional diffusion model were
comprehensively compared. After the noise is predicted by the conditional diffusion
model, an urban morphology map is generated iteratively via the gradient-based annealing
sampling method.

3.2. Method Framework

In this paper, a method for predicting urban morphology based on a conditional
diffusion model is proposed. This method decomposes the task of predicting urban
morphology based on spatial and social attributes into two subproblems: estimating the
gradient of the conditional distribution p(IT |IC), and gradient-based annealing sampling.
The framework of the method is shown in Figure 1.

(1) Training stage. Specifically, multi-level Gaussian noise ϵi(i = 1, . . . , L) is added to the
original IT to obtain the perturbed Ii

T , after which Ii
T and the guidance condition IC

are used as inputs to the conditional diffusion model. The gradient of the conditional
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distribution p
(

Ii
T
∣∣IC

)
is approximated with the noise ϵi

θ predicted by the conditional
diffusion model, where ϵi

θ is the output of the conditional diffusion model.

(2) Generation stage. The conditional distribution p
(

Ii−1
T

∣∣∣IC, Ii
T

)
is parameterized with

the noise ϵi
θ predicted by the conditional diffusion model, and the generation target is

updated by sampling from the distribution, until iteration is completed. Specifically,
the pure noise is first sampled from the Gaussian distribution as the initial value IL

T
of the generation target, which is used as input to the conditional diffusion model,
along with the guidance condition IC. The conditional distribution p

(
IL−1
T

∣∣∣IC, IL
T

)
is parameterized with the noise ϵL

θ predicted by the conditional diffusion model,
and the updated generation target IL−1

T is sampled from the distribution. The above
process is iterated until the final generation target I0

T is sampled from the conditional
distribution p

(
I0
T

∣∣IC, I1
T
)
.

Figure 1. Framework of the urban morphology prediction method based on the conditional diffusion
model. During the training stage, the optimization objective of the conditional diffusion model is
to minimize the distance between the predicted noise and the added noise. During the generation
stage, the conditional diffusion model iteratively predicts noise and parameterizes the corresponding
conditional distribution. The generation target is updated by sampling from this distribution until
the end of the iterations, to obtain the final generated target.

3.2.1. Training Stage

The attribute-based urban morphology prediction is modeled as a conditional distri-
bution p(IT |IC). For construction of the guidance condition IC, two methods are adopted
in this paper for the experiments. The first method is to stack the images representing
spatial and social attributes according to the channel to obtain IC (i.e., fusion1). The second
method is to add the images representing spatial and social attributes element by element
to obtain IC (i.e., fusion2).

The conditional diffusion model includes two stages: forward diffusion with added
noise and backward diffusion with predicted noise. In the forward diffusion stage, isotropic
Gaussian noise ϵi(i = 1, . . . , L) is added to the original generation target IT . The perturbed
generation target Ii

T follows a Gaussian distribution, as shown in Formulas (1) and (2),
where αi is a parameter that obeys the linear growth strategy and I denotes the variance
of the standard Gaussian distribution. By continuously adding isotropic Gaussian noise,
the original generation target IT is gradually transformed into Gaussian noise. Therefore,
the original target distribution p(IT) is transformed into a standard Gaussian distribution.
Forward diffusion does not involve training or updating the parameters of the conditional
diffusion model.

Ii
T =
√

αi Ii−1
T +

√
1− αiϵi, ϵi ∼ N(0, I) (1)

p
(

Ii
T

∣∣∣Ii−1
T

)
= N (Ii

T ;
√

αi Ii−1
T , (1− αi)I) (2)

In contrast, for backward diffusion, the perturbed generation target Ii
T and the guid-

ance condition IC are used as inputs to the conditional diffusion model fθ

(
Ii
T , IC, i

)
, which

is trained to predict the noise ϵi added by forward diffusion. The optimization objective of
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backward diffusion is to minimize the distance between the noise ϵi
θ predicted by the condi-

tional diffusion model fθ

(
Ii
T , IC, i

)
and the noise ϵi added by forward diffusion. During the

optimization process, multiple different levels of Gaussian noise are used for joint training.
The optimization objectives for a single noise level and the overall levels are shown in
Formulas (3) and (4).

l(i) =
1
2

EIT∼p(IT)
EIi

T∼P(Ii
T |IT)

[||ϵi
θ − ϵi||]22 (3)

L(i = 1, . . . , L) =
1
L

L

∑
i=1

l(i) (4)

Thus, the gradient of the conditional distribution p
(

Ii
T
∣∣IC

)
can essentially be estimated

under different noise levels.

3.2.2. Generation Stage

The function of the noise predicted by the conditional diffusion model is to estimate
the gradient of the conditional distribution p

(
Ii
T
∣∣IC

)
corresponding to different noise levels,

thereby being able to parameterize the conditional Gaussian distribution p
(

Ii−1
T

∣∣∣IC, Ii
T

)
of the backward diffusion, as shown in Formula (5), where ϵi

θ represents the output of
the conditional diffusion model fθ

(
Ii
T , IC, i

)
and I denotes the variance of the standard

Gaussian distribution.

p
(

Ii−1
T

∣∣∣IC, Ii
T

)
= N (Ii−1

T ;
1√
αi

(
Ii
T −

1− αi√
1− ᾱi

ϵi
θ

)
, (1− αi)I) (5)

To predict urban morphology, gradient-based sampling is needed, to generate an
urban morphology map that matches the conditional distribution p(IT |IC). According to
the sampling strategy in ref. [13], a gradient-based annealing sampling method is used in
this paper. The pseudo-code for the gradient-based annealing sampling method can be
found in Algorithm 1.

Algorithm 1 Gradient-Based Annealing Sampling Method

1: Require: {αi}L
i=1, w, IC

2: Initialize IL
T ∼ N (0, I)

3: for i← L downto 1 do
4: ▷ Linear combination between condition and unconditional outputs
5: ϵ′i = (1 + w) fθ(Ii

T , IC, i)− w fθ(Ii
T , IC = ∅, i)

6: ▷ Parameterize the condition distribution
7: p(Ii−1

T |Ii
T , IC) = N

(
I(i−1)
T ; 1√

αi

(
Ii
T −

1−αi√
1−ᾱi

ϵ′i

)
, (1− αi)I

)
8: ▷ Sample from the condition distribution
9: z ∼ N (0, I)

10: Ii−1
T = 1√

αi

(
Ii
T −

1−αi√
1−ᾱi

ϵ′i

)
+
√

1− αiz

11: ▷ Iterative update Ii
T

12: Ii
T ← Ii−1

T
13: end for
14: return IT

Specifically, the pure noise is first sampled from the Gaussian distribution as the initial
value of the generation target, which is used as input to the conditional diffusion model
along with the guidance condition IC. The conditional diffusion model fθ

(
Ii
T , IC, i

)
is used

to predict the corresponding noise. The conditional distribution p
(

Ii−1
T

∣∣∣IC, Ii
T

)
is then

parameterized based on the predicted noise, and the generation target Ii−1
T with a lower
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noise level is sampled from p
(

Ii−1
T

∣∣∣IC, Ii
T

)
. The above process is repeated for L iterations

to update the initial value of the generation target. The process of sampling from the
conditional distribution p

(
Ii−1
T

∣∣∣Ii
T , IC

)
is shown in Formula (6), where z ∼ N(0, I).

Ii−1
T =

1√
αi

(
Ii
T −

1− αi√
1− ᾱi

ϵi
θ

)
+

√
1− αiz, i = L, . . . , 1 (6)

In addition, to prevent the degradation caused by ignoring the guidance condition
when predicting noise using the condition diffusion model, the sampling strategy in
ref. [40] is utilized. The noise ϵ′i that is used to parameterize the conditional distribution

p
(

Ii−1
T

∣∣∣IC, Ii
T

)
is represented as a linear combination of the output of the conditional

diffusion model fθ

(
Ii
T , IC, i

)
and the unconditional diffusion model fθ

(
Ii
T , IC = ∅, i

)
, as

shown in Formula (7). The parameter w is used to control the degree of guidance. By
adjusting the parameter w, different biases can be achieved between the diversity and the
correlation of the generation target.

ϵ′i = (1 + w) fθ

(
Ii
T , IC, i

)
− w fθ

(
Ii
T , IC = ∅, i

)
(7)

4. Experiment and Discussion
4.1. Description of the Dataset

In this paper, the training and testing datasets published in ref. [10] were used to train
and test the model. The training dataset contained four types of images, namely, urban
built-up area images (as label), as well as corresponding NTL images, DEM images, and
water area images, for a total of 9697 images of each type. The test dataset also included the
above four types of images, with a total of 200 images for each type. The size of the images
was 128 × 128, and each image represented a geographic unit of 100 km × 100 km, with each
pixel representing approximately 780 m × 780 m. Detailed information on the sampling
time and sampling location of the dataset can be found in ref. [10]. The urban built-up area
image was a binary image, with 1 representing a built-up area and 0 representing a non-
built-up area. Each pixel in the DEM image is the average elevation of the corresponding
area, and the pixel value is scaled to 0-1. Each pixel in the NTL image is also an average
measure of the corresponding area, and the pixel value is scaled to 0-1. The water area
image is a binary image, with 0 representing the land area and 1 representing the water
area. Figure 2 shows these four types of images.

Figure 2. Visualization of the dataset sample. The urban built-up area images and the water area
images are binary images with pixel values of 0 and 1, respectively. Each pixel in the DEM and NTL
images represents the average value of the corresponding geographic area, and the pixel value is
scaled to 0-1.

There are significant differences in samples from different urban areas, which can be
intuitively reflected in the proportion and concentration of built-up areas. In this paper, a
histogram of the number of samples with different proportions of built-up areas (i.e., first
feature) was presented in the dataset, as shown in Figure 3. In addition, the variance in
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the centroid distance of the built-up areas (i.e., second feature) was calculated for each
sample, and it was normalized accordingly, which could reflect the degree of concentration
of urban development. A histogram of the number of urban samples representing different
variances in the centroid distance in the built-up area of the dataset is shown in Figure 4.

Figure 3. Histograms of the dataset regarding the first feature. The left figure represents the results
for the training dataset, and the right figure represents the results for the testing dataset.

Figure 4. Histograms of the dataset regarding the second feature. The left figure represents the results
for the training dataset, and the right figure represents the results for the testing dataset.

Figures 3 and 4 show that the distributions of the two types of statistical features in
the training and testing datasets were similar. However, there was a significant difference
in the extreme values of the two types of statistical features in the training and testing
datasets, as shown in Table 1.

Table 1. The extreme values of the two types of statistical features in the dataset.

Dataset
First Feature Second Feature

Min Max Min Max

train 0.01001 0.44452 0.04243 4.67531
test 0.01007 0.22125 0.06554 3.44296

4.2. Baseline Methods

In this paper, XGBoost, U-Net, CityGAN, and MetroGAN were used as baseline
methods. The baseline methods were quantitatively compared with the method proposed
in this paper from the perspective of multilevel metrics.
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XGBoost is widely used as a classification model in urban geography research [41]. In
this paper, NTL images, DEM images, and water area images were used as inputs to the
model, and the model classified each pixel as a built-up or non-built-up area to obtain the
prediction result.

U-Net is a widely used deep neural network model for image transformation tasks [42]
and can predict a corresponding target image based on the input image. In this paper,
NTL images, DEM images, and water area images were used as inputs to predict the
corresponding urban built-up area image.

CityGAN is an early model used to predict urban morphology. In this paper, NTL
images, DEM images, and water area images were used as conditions to train this model to
output the corresponding urban morphology.

MetroGAN is a recent model used for urban morphology prediction, and it has
achieved the best results. This model uses NTL images, DEM images, and water area
images as conditions to train and output the corresponding urban morphology. Moreover,
this model introduces geographical constraint loss and uses a progressive generation
strategy to achieve high-quality prediction results.

4.3. Experiment and Parameter Setup

The focus of this paper is predicting attribute-based urban morphology, where multi-
source attributes are aggregated as a guidance condition. However, different methods
of aggregating multi-source attributes have different impacts on the generation target.
Therefore, for the aggregation method of the guidance condition, two experiments were
conducted in this paper. The first aggregation method (i.e., fusion1) stacked the images
representing multi-source attributes by channel. The calculation process is shown in
Formula (8). The second aggregation method was to add the images representing multi-
source attributes element-wise. The calculation process is shown in Formula (9).

IC = stack[Id, Iw, In] (8)

IC = Id + Iw + In (9)

For the parameters in the experiment, the noise level in forward diffusion was set to
1000 steps (i = 1, . . . , 1000). The noise variance (1− αi) was linear growth, where the initial
value was set to 0.0001 and the final value was set to 0.02. This setting followed that of the
DDPM model [13]. The training epochs were set to 500, and the optimizer was set to Adam.
The initial learning rate was set to 1 × 10−4, while a cosine learning rate decay strategy was
used. The batch size of the training stage was set to 64. The computing device used in the
experiment was an NVIDIA A6000 GPU with the operating system Ubuntu 22.04. In the
generation stage, a threshold of 0.9 was used to perform numerical cropping on the final
generation target. Pixels larger than the threshold were mapped to 1, and pixels smaller
than the threshold were mapped to 0.

4.4. Evaluations

Based on the evaluation framework proposed in ref. [10], the generation target was
quantitatively evaluated and verified in this paper. This included the following two aspects:

(1) Evaluating whether the generation target was similar to the actual label in terms of
the visual features.

(2) Verifying whether the spatial morphology of the generation target was consistent with
the actual label.

For the evaluation of visual features, the generation target was compared with the
actual label at three levels: low-level pixel features, shallow structural features, and deep
structural features. Since urban areas follow fractal structural laws at the macro level,
fractal dimensions were used to validate the consistency of the generation targets with the
actual labels. Table 2 summarizes the evaluation and validation metrics.
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Table 2. Summary of the evaluation and validation metrics.

Dimension Feature Purpose Metric

visual
pixel feature evaluation PSNR

shallow structural feature evaluation SSIM
deep structural feature evaluation LPIPS

spatial spatial morphological feature validation FD

4.4.1. Low-Level Pixel Feature

For low-level pixel features, the peak signal-to-noise ratio (PSNR) was used as the
metric, which was calculated using Formulas (10) and (11). H and W denote the height and
width of the image, S(x, y) and T(x, y) denote the pixel values at the same position for the
two images to be compared, and Maxs denotes the maximum possible pixel value in the
image. The larger the PSNR, the greater the similarity between the generation target and
the actual label in terms of the low-level pixel features.

MSE =
1

HW

H

∑
x=1

W

∑
y=1
||S(x, y)− T(x, y)||2 (10)

PSNR = 10 log10 (
Max2

S
MSE

) (11)

4.4.2. Shallow Structural Feature

For the shallow structural features, the SSIM [43] was used as the metric. The SSIM
can comprehensively compare two images in terms of the brightness, contrast, and shallow
visual structure. The larger the SSIM, the smaller the differences in the brightness, contrast,
and shallow image structure between two images. The calculation method is shown in
Formula (12). The µS and µT denote the means of the pixels in the two images, σS and σT
denote the variances in the pixels in the two images, and σST denotes the covariance of the
pixels in the two images. C1 and C2 are constants used to stop the denominator being zero
in the division.

SSIM(S, T) =
(2µSµT + C1)(2σST + C2)

(µ2
S + µ2

T + C1)(σ
2
S + σ2

T + C2)
(12)

4.4.3. Deep Structural Feature

For deep structural features, LPIPS [44] was used as the metric. LPIPS uses deep
convolutional neural networks to measure the multi-level global similarity of two images,
and the measurement result is well matched with human cognition of the images. The
smaller the LPIPS, the greater the global similarity between two images. The calculation
method is shown in Formula (13). L denotes the feature extraction network containing L
layers, Hl and Wl denote the height and width of the feature map in the lth layer, wl ∈ RCl

denotes the scaling factor for all C channels of the feature map in lth layer, and zl
S,h,w and

zl
T,h,w denote the pixel values at the same position of the lth feature map of the two images.

d(S, T) =
L

∑
l=1

1
HlWl

Hl ,Wl

∑
h=1,w=1

||ωl
⊙

(zl
S,h,w − zl

T,h,w)||
2
2 (13)

4.4.4. Spatial Morphology Feature

The fractal dimension is an important indicator of the spatial morphology of an urban
area. Based on ref. [45], the box counting method was used to calculate the fractal dimension
(FD) of the generated target, as shown in Formula (14). r denotes the side length of the box,
and N(r) denotes the number of boxes needed to cover the image.
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D(r) = lim
r→0

log N(r)
log r−1 (14)

4.5. Experimental Results
4.5.1. Evaluation of the Multi-Level Visual Features

In this paper, the generation targets were evaluated using three levels of visual
features—low-level pixel features, shallow structural features, and deep structural feature—and
were compared with four baseline methods, as shown in Table 3 (the results of the baseline
methods are from ref. [10]). The parameter w used in the sampling process was fixed at 0.1.

Table 3. Evaluation results in terms of visual features.

Method PSNR ↑ SSIM ↑ LPIPS ↓

XGBoost 9.3806 0.4659 0.6593
U-Net 11.7633 0.4771 0.3405

CityGAN 10.4691 0.4241 0.3408
MetroGAN 12.6011 0.5083 0.2687

Ours (fusion1 w = 0.1) 13.2946 0.5382 0.2333
Ours (fusion2 w = 0.1) 13.3618 0.5367 0.2497

The PSNR metric was improved by 5.5% (fusion1) and 6.0% (fusion2) compared
to the best baseline method and the XGBoost model was significantly lower than the
other methods. The SSIM metric was improved by 5.9% (fusion1) and 5.6% (fusion2)
compared to the best baseline method. The LPIPS metric was improved by 13.2% (fusion1)
and 7.1% (fusion2) compared to the best baseline method, and the XGBoost model was
significantly higher than the other methods. These results suggest that constructing a
guidance condition by summing images representing multi-source attributes element
by element allows a conditional diffusion model to learn low-level pixel feature more
accurately. However, constructing a guidance condition by stacking images representing
multiple source attributes by channel allows the conditional diffusion model to learn
shallow and deep structural features more accurately. In addition, the results in Table 3
show that there was a significant gap between the XGBoost model and other models in
terms of the PSNR metric and LPIPS metric.

The results in Table 3 show that this paper achieved an enhancement in all evaluation
metrics. In terms of low-level pixel features and shallow structural features, this paper
realized a more than 5.5% improvement compared with the best baseline method, which
indicates that the method proposed in this paper can better capture the low-level features
of urban systems. In addition to the low-level pixel features and shallow structural features,
the high-level global structural features could more comprehensively reflect the spatial
pattern similarity between the prediction results and the real labels. In terms of the LPIPS
metric, this paper achieved a 13.2% improvement compared to the best baseline method,
which indicates that the method proposed in this paper could better capture the deep
structure of urban systems.

The learning objective of CityGAN and MetroGAN models is the distribution of urban
morphology. However, the diversity and complexity of urban systems make it difficult to
directly approximate this distribution. In this paper, we changed the learning objective
to implicitly approximate the gradient of the distribution by predicting noise through a
diffusion model, which reduced the learning difficulty. As a result, using the same data
for training, the method proposed in this paper could more accurately approximate the
gradient of the urban form distribution, and thus indirectly and accurately approximate
the urban morphology distribution. In addition, the CityGAN and MetroGAN models
obtain generation targets through one-step sampling, while the method proposed in this
paper obtains generated targets through successive multi-step sampling operations, which
further ensures the accuracy of the generated targets.
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Figure 5 shows some generation targets (as Generate) and corresponding labels, where
the parameter w of the sampling process was fixed to 0.1. Each row of the left figure and
right figure represents a different urban area. The first three columns are NTL images,
DEM images, and water area images of urban areas. The fourth column is the real built-up
area images of the urban areas. The fifth column of the left figure is the prediction results
obtained based on the first aggregation method. The fifth column of the right figure is the
prediction results based on the second aggregation method. The closer the images in the
fourth column are to the images in the fifth column, the more accurate the predictions in
this paper.

Figure 5. Some generation targets. The color bar is consistent with Figure 2. The left figure shows
the generation targets obtained by constructing a guidance condition based on the first aggregation
method. The right figure shows the generation targets obtained by constructing a guidance condition
based on the second aggregation method.

4.5.2. Validation of the Spatial Morphology Feature

To verify whether the spatial morphological features of the generation targets (as
Generate) were similar to the corresponding labels, the fractal dimension was used for
verification. The fractal dimensions of each generation target (the parameter w of the
sampling process was fixed to 0.1) and the corresponding label were calculated separately.
Then, the Pearson correlation coefficient of the two fractal dimensions was calculated, as
shown in Figure 6. The Pearson correlation coefficient for the first aggregation method
of the guidance condition was 0.760. The Pearson correlation coefficient for the second
aggregation method of the guidance condition was 0.647. This suggests that constructing a
guidance condition by stacking images representing multiple attributes by channels allowed
the conditional diffusion model to learn spatial morphological feature more accurately.

The differences between the fractal dimensions of the generation targets and the fractal
dimensions of the corresponding labels were calculated. The five segments 0–0.1, 0.1–0.2,
0.2–0.3, 0.3–0.4, and >0.4 were divided at intervals of 0.1. Within each segment, the number
of samples, the average fractal dimension of the generation targets, the average fractal
dimension of the labels, and the average proportion of built-up areas of the labels were
counted separately. The statistical results are shown in Tables 4 and 5.
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Figure 6. Fractal dimension - statistics of the generation targets and corresponding labels.

As shown in Table 4, there were 177 samples with a fractal dimension difference of
less than 0.2 and 7 samples with a difference of more than 0.3. As shown in Table 5, there
were 159 samples with a fractal dimension difference of less than 0.2 and 19 samples with
a difference of more than 0.3. This shows that stacking images representing attributes by
channel to construct a guidance condition enabled the conditional diffusion model to learn
spatial morphological feature more accurately.

Table 4. Statistical results for the first aggregation method.

Segment Num Average FD of Gen Average FD of Label

0.0–0.1 130 2.7443 2.7482
0.1–0.2 47 2.6465 2.7059
0.2–0.3 16 2.5398 2.5805
0.3–0.4 6 2.4113 2.7416

>0.4 1 2.3027 2.7386

Table 5. Statistical results for the second aggregation method.

Segment Num Average FD of Gen Average FD of Label

0.0–0.1 108 2.7184 2.7407
0.1–0.2 51 2.6456 2.7222
0.2–0.3 22 2.5834 2.6705
0.3–0.4 13 2.4044 2.7418

>0.4 6 2.4181 2.6170

Figures 7 and 8 show some bad samples of generation targets that were significantly
different from the corresponding labels. As shown in Figure 7, the fractal dimensions of the
bad samples that were generated via the first aggregation method were significantly lower
than those of the corresponding labels. As shown in Figure 8, the fractal dimension of
the bad samples that were generated via the second aggregation method had the opposite
trend to those of the corresponding labels, which were relatively small when the fractal
dimension of the labels was relatively large, and vice versa.
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Figure 7. Bad samples based on the first aggregation method.

Figure 8. Bad samples based on the second aggregation method.

4.6. Ablation Experiments

For the two types of aggregation methods for the guidance condition and the parameter
w used in the generation stage, ablation experiments were conducted to investigate their
effect on the generation target. The parameter w was set to ten different values ranging
from 0.0 to 4.0, which could reflect the effects of smaller and larger correlations of the
guidance condition on the generation targets. Table 6 shows the results of the ablation
experiment based on the first aggregation method with different values of parameter w.
Table 7 shows the results of the ablation experiment based on the second aggregation
method with different values of the parameter w. Figures 9 and 10 show some generation
targets based on the two types of aggregation methods with different values of parameter
w and the corresponding labels.

Table 6. Results based on different values of the parameter w with the first aggregation method.

PSNR ↑ SSIM ↑ LPIPS ↓ Coefficient of FD ↑

w = 0.0 13.3465 0.5405 0.2353 0.7562
w = 0.1 13.2946 0.5382 0.2333 0.7609
w = 0.2 13.2457 0.5359 0.2320 0.7598
w = 0.3 13.2017 0.5334 0.2311 0.7702
w = 0.4 13.1637 0.5313 0.2301 0.7582
w = 0.5 13.1280 0.5292 0.2294 0.7635
w = 1.0 12.9691 0.5181 0.2292 0.7425
w = 2.0 12.7586 0.5006 0.2341 0.7235
w = 3.0 12.6156 0.4880 0.2380 0.7098
w = 4.0 12.4961 0.4772 0.2430 0.7069
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Table 7. Results based on different values of the parameter w with the second aggregation method.

PSNR ↑ SSIM ↑ LPIPS ↓ Correlation of FD ↑

w = 0.0 13.4104 0.5389 0.2520 0.6495
w = 0.1 13.3618 0.5367 0.2497 0.6476
w = 0.2 13.3141 0.5344 0.2475 0.6390
w = 0.3 13.2700 0.5317 0.2469 0.6268
w = 0.4 13.2248 0.5290 0.2455 0.6225
w = 0.5 13.1843 0.5267 0.2450 0.6264
w = 1.0 13.0044 0.5143 0.2442 0.6286
w = 2.0 12.7755 0.4971 0.2473 0.6295
w = 3.0 12.6391 0.4858 0.2499 0.6294
w = 4.0 12.5058 0.4750 0.2545 0.6231

4.6.1. Comparison of Two Types of Aggregation Method

The use of the same parameter w allowed a fair comparison of two types of aggregation
methods on the generation targets. By comparing Tables 6 and 7, it can be seen that the
targets generated based on the first aggregation method were always better for the three
metrics of SSIM, LPIPS, and spatial morphological features. Therefore, stacking images
representing multi-source attributes by channel enabled the conditional diffusion models
to better utilize multi-source attributes to predict urban morphology.

In addition, the confusion matrix was calculated by counting all the images in the
testing dataset with the corresponding predictions, as shown in Figure 11. The elements of
each position in the confusion matrix represent the number and proportion of pixels. From
the confusion matrix, it can be seen that the prediction accuracy of the first aggregation
method for built-up areas was 36.17%, which was higher than that of the second method,
which was 33.91%; while the prediction accuracy of the second aggregation method for non-
built-up areas was 97.76%, which was slightly higher than that of the first method, which
was 97.56%. This indicates that the first aggregation method was more advantageous.

4.6.2. Comparison of Different Parameters w

As shown in Tables 6 and 7, under the two types of aggregation method, both the PSNR
metric and SSIM metric decreased significantly with increasing w, which indicates that the
difference between the generation targets and the corresponding labels in terms of low-level
pixel feature and shallow structural feature gradually increased. The LPIPS metric first
decreased and then increased, which indicated that the difference between the generation
targets and the corresponding labels in terms of deep structural feature first decreased and
then increased. For the spatial morphology feature, the correlation between the fractal
dimension of the generation targets and the fractal dimension of the corresponding labels
decreased significantly after the parameter was w increased to a certain value, which
indicates that the correlation between the generation target and the multi-source attributes
was significantly weaker after the parameter w exceeded a certain value.
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Figure 9. Generation targets based on different values of the parameter w under the first aggregation
method. The first column shows the corresponding labels.
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Figure 10. Generation targets based on different values of the parameter w under the second
aggregation method. The first column shows the corresponding labels.



Remote Sens. 2024, 16, 1799 18 of 21

Figure 11. Confusion matrix for the prediction results of the two types of fusion method.

4.7. Discussion

Due to the complexity and diversity of urban morphology, it is unrealistic to assume
that they obey a certain probability distribution that can be directly approximated. Distinct
from models that directly approximate the urban morphology distribution, diffusion
models implicitly learn the gradient of an urban morphology distribution by predicting
the noise and thus indirectly approximate the urban morphology distribution. In general,
for complex target distributions, the form of the gradient is usually simpler. Thus, a
diffusion model has a clear advantage when trained using the same dataset. In this paper,
attribute-based urban morphology prediction was modeled as a conditional distribution.
The gradient of the conditional distribution was estimated by predicting the noise through
a conditional diffusion model, and a gradient-based annealing sampling method was used
to generate an urban morphology map matching the approximated conditional distribution.
Compared to one-step sampling, this paper used consecutive multi-step sampling in the
generation phase, which improved the generation quality through decomposition. The
experimental results showed that compared with baseline methods, the urban morphology
prediction method proposed in this paper achieved enhancements in all evaluation metrics.

For the construction of a guidance condition, experiments with two types of method,
stacking by channel and summing element-by-element, were conducted. The ablation
experiments showed that the aggregation method of stacking images representing multi-
source attributes by channel retained the attribute information more completely, which
enabled the conditional diffusion model to estimate gradients more accurately and facili-
tated the prediction of urban morphology.

Traditional prediction methods are mainly based on statistical spatio-temporal interac-
tion information. This information is acquired with a lag and cannot fully utilize the large
number of existing remote sensing images. Aiming at the above problems, the method
proposed in this paper has obvious advantages. First, remote sensing images are easy to
obtain and have high timeliness. Second, by inputting the time series images, the method
proposed in this paper can predict the urban morphology in the corresponding time series,
which helps researchers to explore urban renewal in the time series.

5. Conclusions and Future Work

Inspired by score-based models, an urban morphology prediction method based on a
conditional diffusion model was proposed in this paper. First, attribute-based urban mor-
phology prediction was modeled as a conditional distribution. Second, the gradient of the
conditional distribution was estimated by predicting noise through a conditional diffusion
model, and the conditional distribution was then implicitly approximated based on the
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gradient. In the generation stage, the corresponding conditional distribution was parame-
terized based on the noise predicted by the conditional diffusion model, and the generation
target was obtained via a gradient-based annealing sampling method. Compared with
the best baseline method, the proposed method achieved 5.5% and 5.9% improvements
for the low-level pixel feature and shallow structural feature, respectively, and a 13.2%
significant improvement in the deep structural feature. The experimental results verified
the effectiveness of the strategy of using the conditional diffusion model to estimate the
gradient and thus implicitly approximate the urban morphology distribution. The ablation
experiments showed that the construction method of stacking images representing multi-
source attributes by channel retained more complete attribute information, which allowed
the conditional diffusion model to estimate gradients more accurately. In future work, more
attributes will be used to predict urban morphology. In addition, based on the gradient of
the distribution estimated by the conditional diffusion model, the gradient could be used
to measure the impact of different attributes on predicting urban morphology.
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