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Abstract: Volcanic clouds pose significant threats to air traffic, human health, and economic activity,
making early detection and monitoring crucial. Accurate determination of eruptive source parameters
is crucial for forecasting and implementing preventive measures. This review article aims to identify
the most common remote sensing methods for monitoring volcanic clouds. To achieve this, we
conducted a systematic literature review of scientific articles indexed in the Web of Science database
published between 2010 and 2022, using multiple query strings across all fields. The articles were
reviewed based on research topics, remote sensing methods, practical applications, case studies,
and outcomes using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. Our study found that satellite-based remote sensing approaches are the most
cost-efficient and accessible, allowing for the monitoring of volcanic clouds at various spatial scales.
Brightness temperature difference is the most commonly used method for detecting volcanic clouds
at a specified temperature threshold. Approaches that apply machine learning techniques help
overcome the limitations of traditional methods. Despite the constraints imposed by spatial and
temporal resolution and optical limitations of sensors, multiplatform approaches can overcome these
limitations and improve accuracy. This study explores various techniques for monitoring volcanic
clouds, identifies research gaps, and lays the foundation for future research.

Keywords: remote sensing; volcanic clouds; volcanic plumes; monitoring; systematic literature review

1. Introduction

Explosive volcanic eruptions are hazardous natural events that can have severe
consequences at local, regional, and even global scales. They can produce large amounts
of volcanic particles (mostly ash) and gases (e.g., H2O, CO2, and SO2) that are carried
upward in the atmosphere by convective volcanic plumes or laterally transported by
ground-hugging pyroclastic density currents [1]. As volcanic clouds spread into the
atmosphere, they become progressively diluted by the air’s entrainment and particles’
settling. Among many factors, the dispersal of ash depends on the dynamics and height
of the volcanic plume, particle characteristics, sedimentation processes, and atmospheric
conditions (wind advection, atmospheric turbulence, temperature, etc.) [1,2]. Volcanic
ash can be transported over very long distances from the source (up to thousands of
kilometers) and remains airborne for extended periods (several months) [3,4]. Thus,
volcanic ash can potentially affect large land, ocean, and airspace areas, threatening
human health, land and water ecosystems, critical infrastructure, economic sectors,
agricultural areas, ground transportation, air traffic, and, in extreme cases, the global
climate [5].

It is crucial to accurately detect, monitor, and forecast their dispersion to mitigate the
hazardous consequences of volcanic clouds. Several methods are available for achieving
this objective, including ground-based techniques [6–8], aircraft/unmanned aerial vehicles
(UAVs) [9,10], satellite remote sensing [11–13], and numerical forecasting models [14]. In
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addition, multiplatform approaches can improve volcanic cloud detection and provide
more reliable forecasting results [15,16].

These methods are used by some volcano observatories and by volcanic ash advisory
centers (VAACs), which typically combine remote sensing approaches with volcanic ash
transport and dispersion models (VATDMs) [17,18]. However, various factors can limit vol-
canic cloud forecasting. A forecast’s reliability depends on the input data’s accuracy, which
relies on other models, direct measurements, and remote sensing retrievals. Numerical
forecasts are heavily dependent on the estimation of eruptive source parameters (ESPs),
particularly the mass eruption rate (MER), total grain size distribution (TGSD), and plume
height, which are often difficult to obtain with the necessary accuracy during the first few
hours of an eruption. Plume height is of the utmost importance and can be obtained more
accurately by volcano observatories using ground-based techniques in the first stages of an
eruption, which are then used to trigger operations in VAACs [19].

After the eruptions of Eyjafjallajökull in 2010 and Grímsvötn in 2011, the International
Civil Aviation Organization (ICAO) established ash concentration thresholds to mitigate
air traffic risks. Zehner [20] translated the specific requirements for improved volcanic ash
monitoring and forecasting. These include the early detection of volcanic emissions and
near real-time global monitoring of volcanic clouds with open access and data delivery [21],
as well as quantitative retrievals of volcanic ash, SO2 concentrations, and altitudes from
satellite instruments and their validation [22].

The purpose of this review article is threefold as the following: (1) to identify the
research approaches used to detect and monitor volcanic clouds and estimate ESP using
remote sensing data; (2) to characterize the different approaches for identifying and com-
paring the advantages and shortcomings of retrieval methods; and (3) to identify possible
research gaps for future developments and support a research agenda on this topic. To
achieve these goals, a systematic literature review was conducted using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement as a
guideline [23].

2. Methodology

To identify relevant studies on volcanic plume and cloud detection and monitoring, we
conducted a systematic literature review of scientific articles indexed in the Web of Science
database using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement as a guideline [23].

The search parameters used were keywords chosen based on the review topic. Key-
words were combined as the following: “Volcanic cloud” OR “Volcanic plume” OR “Vol-
canic column” AND “Ash plume” OR “Ash cloud” OR “Plume” AND “Remote sensing”
OR “Satellite” AND “Monitoring” AND “Eruptive source parameters” OR “SO2 mass
flux” OR “SO2 flux”. Only articles published in peer-reviewed journals between 1 January
2010 and 31 December 2022 were considered for this analysis (link for the Web of Science
query, last visited on 20 November 2023: https://www.webofscience.com/wos/woscc/
summary/21923291-7faa-4022-923e-86244a6a12c0-b114db3d/relevance/1). This research
focused explicitly on original articles, and thus, review, conference, and proceedings articles
were excluded from the search [24,25].

The goal of this work was to examine remote sensing approaches used to detect and
monitor volcanic plumes and clouds and estimate eruptive source parameters and the only
articles that were selected included the following criteria: (1) ash plume retrievals, SO2
retrievals, or a combination of both; (2) remote sensing methods and data combined with nu-
merical forecasting of volcanic plumes and clouds; (3) detection and monitoring of volcanic
plumes and clouds in near real-time; and (4) estimation of eruptive source parameters.

In total, 828 scientific articles were identified during the initial queries. These articles
were all reviewed by analyzing their titles and abstracts. This resulted in the second and
finer selection of 360 articles that met the keywords and related research criteria. A total of

https://www.webofscience.com/wos/woscc/summary/21923291-7faa-4022-923e-86244a6a12c0-b114db3d/relevance/1
https://www.webofscience.com/wos/woscc/summary/21923291-7faa-4022-923e-86244a6a12c0-b114db3d/relevance/1
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238 articles were excluded because they did not meet the inclusion criteria defined above
or had a broader scope, resulting in a final selection of 122 articles (Figure 1).
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Figure 1. Systematic review procedure for article selection.

The final dataset was categorized based on five identified methodological approaches
for volcanic cloud detection and monitoring. It was divided into five research categories:
(A) satellite-based remote sensing for volcanic cloud detection and monitoring; (B) ground-
based remote sensing for volcanic plume and cloud monitoring; (C) airborne/UAV-based
remote sensing for volcanic cloud monitoring; (D) multiplatform approaches for volcanic
plume and cloud monitoring; and (E) remote sensing data assimilation to numerical
forecasting models.
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3. Results

Analysis of the final selection of scientific articles revealed the vast scope of this topic
in the scientific literature, with articles published in 41 peer-reviewed scientific journals
(Figure 2). Most of these journals have diverse subjects and scopes, such as remote sensing,
climate, robotics, geosciences, and atmosphere. The top six journals account for 60% of the
articles analyzed, with the remaining 40% distributed across 35 other journals.
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Based on the case studies (Figure 3), we observed a wide range of volcanoes covered in
122 articles (43 volcanoes in total). The Eyjafjallajökull 2010 eruption alone was represented
26 times, making it one of the best-studied eruptions. The eruptions of the Etna volcano
accounted for 34 of the total case studies, as it was also one of the best-monitored volcanoes
in the world. The top five studied volcanoes appeared 81 times as case studies in the
selected articles.
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Regarding the research categories, 46% of the selected scientific articles were related
to “A-Satellite-based remote sensing for volcanic cloud monitoring” (Figure 4).

All the information collected and processed for this review article is provided in the
Supplementary Materials.



Remote Sens. 2024, 16, 1789 5 of 29
Remote Sens. 2024, 16, x FOR PEER REVIEW  5  of  29 
 

 

 

Figure 4. Distribution of research categories. 

4. Discussion 

4.1. A‐Satellite‐Based Remote Sensing for Volcanic Plumes and Cloud Monitoring (n = 56) 

Table  1  summarizes  the  articles  obtained  from  the  systematic  review  procedure, 

which  focused  on  satellite  remote  sensing-based  approaches  for monitoring  volcanic 

clouds. Their main objectives were ash and SO2 retrieval from volcanic eruptions using 

satellite sensors and applying specific algorithms and techniques. These data are critical 

for tracking and managing volcanic hazards, allowing for rapid responses and ensuring 

the safety of people and infrastructures in volcanic areas. 

Satellite data-driven approaches are the most used method for monitoring volcanic 

clouds and able to monitor at a global scale and in near real-time, primarily because of the 

wide  coverage  and  the  increasing availability of open-access data, being  cost-effective 

[26,27] and particularly relevant for studying remote volcanoes. Earth observation (EO) 

sensors have recently become standard tools for operational agencies to track the move-

ment of volcanic clouds and measure key parameters (e.g., ash mass, SO2 mass, and plume 

height) to provide alert information [28–30]. Many EO satellites carry sensors that are ca-

pable of detecting and measuring volcanic clouds. The abundance of sensors and data has 

led to a new era in research. Instruments such as the Spinning Enhanced Visible and In-

frared Imager (SEVIRI) and Advanced Himawari Imager (AHI) have very high temporal 

resolutions of 15 and 10 min, respectively, using infrared (IR) technology [31,32], allowing 

for day and night monitoring. For ash retrieval, techniques such as brightness temperature 

difference  (BTD)  algorithms use  spectral differences  between  volcanic  clouds  and  the 

background  environment  [29,33]  to quantify  ash parameters. Ultraviolet  (UV)  sensors 

onboard satellites, such as ozone monitoring instruments (OMIs) and tropospheric moni-

toring  instruments  (TROPOMIs),  have  been  used  to  assess  volcanic  SO2  emissions 

[13,34,35]. 

   

Satellite-based remote sensing for volcanic 

plumes and cloud monitoring: 46%

Ground-based remote sensing for volcanic plumes 

and cloud monitoring: 20%

Airborne/UAV-based remote sensing for 

volcanic plume and cloud monitoring: 4%

Multiplatform approaches for volcanic 

plumes and cloud monitoring: 7%

Remote sensing data assimilation into numerical 

forecasting models: 23%

Research Categories

Figure 4. Distribution of research categories.

4. Discussion
4.1. A-Satellite-Based Remote Sensing for Volcanic Plumes and Cloud Monitoring (n = 56)

Table 1 summarizes the articles obtained from the systematic review procedure, which
focused on satellite remote sensing-based approaches for monitoring volcanic clouds. Their
main objectives were ash and SO2 retrieval from volcanic eruptions using satellite sensors
and applying specific algorithms and techniques. These data are critical for tracking and
managing volcanic hazards, allowing for rapid responses and ensuring the safety of people
and infrastructures in volcanic areas.

Satellite data-driven approaches are the most used method for monitoring volcanic
clouds and able to monitor at a global scale and in near real-time, primarily because
of the wide coverage and the increasing availability of open-access data, being cost-
effective [26,27] and particularly relevant for studying remote volcanoes. Earth observation
(EO) sensors have recently become standard tools for operational agencies to track the
movement of volcanic clouds and measure key parameters (e.g., ash mass, SO2 mass, and
plume height) to provide alert information [28–30]. Many EO satellites carry sensors that
are capable of detecting and measuring volcanic clouds. The abundance of sensors and data
has led to a new era in research. Instruments such as the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) and Advanced Himawari Imager (AHI) have very high temporal
resolutions of 15 and 10 min, respectively, using infrared (IR) technology [31,32], allowing
for day and night monitoring. For ash retrieval, techniques such as brightness temperature
difference (BTD) algorithms use spectral differences between volcanic clouds and the back-
ground environment [29,33] to quantify ash parameters. Ultraviolet (UV) sensors onboard
satellites, such as ozone monitoring instruments (OMIs) and tropospheric monitoring
instruments (TROPOMIs), have been used to assess volcanic SO2 emissions [13,34,35].

Based on this analysis, we conclude that satellite remote sensing data approaches
are the most commonly used techniques for volcanic plume and cloud detection and
monitoring and quantification of ESP and that the sensors used for volcanic ash and SO2
monitoring span the electromagnetic spectrum from UV to microwave radiation. In the IR
region, spectral bands at wavelengths of 11 and 12 µm are normally used for the detection
of ash, while 7.3 and 8.7 µm are used for SO2 detection. In the UV region, spectral bands
between 280 and 340 nm were used for measurements of SO2.
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Table 1. Summary of articles related to satellite-based remote sensing for volcanic cloud monitoring
(n = 56).

Reference Case Study Data Source Retrieval Method Main Outcomes

[11] Kasatochi 2008 MODIS, AVHRR, and
AIRS

BTD, LUT, and least
square fit method

Plume height ≈ 17 km.
Total mass ash ≈ 0.46 ± 0.18 Tg.
Total mass SO2 ≈ 2.65 ± 0.82 Tg.

SO2 mass < 30–40% of the
uncorrected values.

[31] Etna 2002 MODIS and SEVIRI RSTash Space–time detection of the evolution of
ash clouds.

[12] Kasatochi 2008 IASI BTD, RTM, and OE
method

Plume height ≈ 12.5 ± 4 km.
Total SO2 ejected mass ≈ 1.7 Tg.

[36] Etna 2002, 2006/7 AVHRR BTD-Water Vapour C
correction and RSTash

The capability of RSTash to account for
water vapor content in the atmosphere

without requiring any ancillary
information.

[37] Etna 2006/7 MODIS, AVHRR, and
SEVIRI RSTash BT The success and failure rates of RSTas

identifying ash are 90.1% and 9.9%.

[38] Eyjafjallajökull 2010
SEVIRI, AIRS,

GOME2, IASI, and
OMI

OE method and RTM

Plume height ≈ 6 km.
Total mass ash ≈ 1.05 Tg.

Total mass SO2 ≈ 0.013–0.073 Tg.
Plume altitude error = 20% or 15%.

Ash mass loadings = 50%.
SO2 loadings error = 400 DU.

[39] Eyjafjallajökull 2010 MODIS, MERSI, and
VIRR SWTD (BTD) and STVA

STVA is more sensitive to volcanic ash
clouds than SWTD and provides

comparable results to ARI and AAI.
FY-3A-derived STVA is effective under

complex meteorological conditions.

[40]
Etna

2000/01/02/03/06
& 08

MISR MINX V1.0 Software
Plume height ≈ 9.2 km.

AOD = 0.03 ad 0.58.
MINX tool uncertainties < 0.5 km.

[41] Eyjafjallajökull 2010 MISR

Research Aerosol
Retrieval Algorithm and

MISR V22 Standard
algorithm

Plume height ≈ 9.5 km.
Non-spherical grains = 60% of the AOD.

Uncertainties using χ2 = 5% of the
observed reflectance.

[42] Eyjafjallajökull 2010 SEVIRI and MODIS BTD R2 = 0.73 for AOT retrievals.

[21] Eyjafjallajökull 2010 SEVIRI BTD and RTM

Plume height ≈ 6 km.
Ash concentration= 5 mg/m−3.
4.8 Mt of ash and 0.2 Mt of SO2

were released.

[43] Grímsvötn 2011 &
Eyjafjallajökull 2010

GOME-2, OMI, and
SCIAMACHY

Linear Fit (LF) algorithm
and DOAS

About 50–80% of the observations were
correctly forecast (hits).

[44] Eyjafjallajökull 2010 MODIS and SEVIRI CO2 Absorption method
and BTD

Plume height ≈ 12 km (Starting).
Plume height 3–4 km (Ending).

Error = 0.6 km.
With sub-pixel image matching, the

estimates of shifts could be enhanced to
about 10–20% of the pixel size.
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Table 1. Cont.

Reference Case Study Data Source Retrieval Method Main Outcomes

[45] Redoubt 2009 MODIS, MISR, and
AVHRR

BTD and MINX V1.0
Software

Plume height from 10.2 km
(03/23/2009) to ≈ 20 km (event 8).
Positive correlation between plume

temperature height retrieval and
optical depth.

MISR can determine the heights of
plumes when the satellite temperature
method will produce very poor results.

[26] Eyjafjallajökull 2010 MODIS

Diffusion source
detection algorithm

combining SWTD with
SO2

The approach proposed by integrating
the split window algorithm with the

SO2 concentration distribution achieves
an excellent detection effect of the

volcanic ash cloud diffusion source and
has a high consistency with volcanic

ARI and AAI.

[46] Shinmoedake 2011 MTSAT-1R and
MTSAT-2 Imager RSTash and BT

Plume height ≈ 7.5 km.
Mass eruptive rate ≈ 9.4 × 105 kg/s

(phase I) to 5.4 × 105 kg/s (phase III)).
Validation analysis success

rates = 90.1%.

[30] Eyjafjallajökull 2010 MODIS PCA

Band 36 has the largest contribution to
the volcanic ash cloud with 72%,
followed by bands 31 (67%) and

30 (65%).
Bands 36, 31, and 30 are used to

eventually detect volcanic ash after the
sensitivity analysis.

[47] Eyjafjallajökull 2010 SEVIRI NN, LUT, and VPR
Plume height ≈ 8 km.

SO2 total mass maximum differences for
all procedures = +/− 15% and +/− 10.

[48] Grímsvötn 2011 SEVIRI and IASI
(1D-Var) retrieval
algorithm for ash
and BTD method

SO2 remained for 2 weeks.
Ash was composition was 50–52% SiO2.

[49] Eyjafjallajökull 2010
& Grímsvötn 2011 GOME-2 and IASI ULB and Oxford

Algorithms

R2 for SO2 mean loading Oxford and
UBL = 0.85/SO2 loading estimated by

IASI and GOME-2 = 0.64.

[50] Eyjafjallajökull 2010 SEVIRI BTD and RTM

Uncertainty due to particle shape
increases the error in the total mass of

the ash cloud from about 40% to
about 50%.

[51] Eyjafjallajökull 2010 MODIS PCA

PCA method has good effect in the
detection of volcanic ash clouds, whose
spectral matching rate of volcanic ash
reaches 74.65 and 76.35% and has high

consistency with AAI distribution.

[52] Etna 2011 SEVIRI VPR and LUT

Ash total mass = 1200 to 3000 tons/h.
SO2 total mass = 1600 to 3500 tons/h.

The results show good agreement
between methods.

[53] Kelud 2014 AVHRR and IASI BTD and RTM

Ash plume top ≈ 18 km.
Underlying ice clouds reduce the ash

needed to reproduce the measured IASI
spectra by about a factor of 12.
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Table 1. Cont.

Reference Case Study Data Source Retrieval Method Main Outcomes

[54] Etna 2013 MVIRI and SEVIRI
Ash cloud top height
(ACTH) based on the

apparent shift to Parallax

Plume top height of ≈ 8.5 km.
ACTH accuracy is 700 m.

[55] Eyjafjallajökull 2010 MODIS VPR and LUT

Total ash and SO2 masses differ by
about 3 and 10%.

Result accuracy reduces to about 50%
when the SO2 is mixed with ice crystals.

[56] Puyehue Cordón
Caulle 2013 MODIS BTD

The MODIS-based altitude of the cloud
≈ 3.9 km (a.s.l.).

Reverse absorption (BTD-based) ≈
4.2 km (a.s.l.).

MODIS cloud mask detected about 50%
of the 16 March 2015 cloud.

[32] Gunung Agung
2017 AHI RSTash

RSTASH performance coupled to high
temporal resolution of Himawari-8 data
may lead to an effective identification
and tracking of ash clouds over East
Asia and the Western Pacific region

despite some limitations.

[57]
Eyjafjallajökull 2010
& Puyehue Cordón

Caulle 2011

SEVIRI, AGRI, and
CALIOP

FY-4 algorithm using
RTM, LSRM, and SWTD

(ash detection)

Y-4 algorithm showed reasonable
agreement with independent data for

plume height.
Bias = 0.037 km.

Standard deviation = 2.80 km.
R2 = 0.61.

[58]
Nabro 2011 &

Puyehue Cordón
Caulle 2011

OMI, CALIOP,
MODIS, AIRS, and

GNSS
RO technique

Plume height agreement with RO and
CALIOP:
R2 = 0.94.

Root mean square (r.m.s.) error = 930 m.

[59] Eyjafjallajökull 2010
& Kasatochi 2008 GOME-2

Full Physics Inverse
Learning Machine

(FP_ILM)

Kasatochi SO2 plume at an altitude in
the range 9–10 reaching 14 km (a.s.l.).

Eyjafjallajökull plume heights are in the
range 6–9 km (a.s.l.).

Plume height retrieved with errors of 1
km for high SO2 total columns (>50 DU)

and a plume height between 6 and
18 km.

[60]
Bogoslof 2017,

Tinakula 2017 &
Sierra Negra 2018

EPIC EPIC SO2 algorithm Tinakula SO2 loadings 14 kt
(21 October).

[61] Calbuco 2015 MODIS and VIIRS

BTD and parametric
retrieval algorithm

combined with BTD
mask

Plume height = 21 km (a.s.l).
Ash mass of 3.65 × 109 kg.

Mass loadings:
VIIRS = 0.4 g/m2;

MODIS = 1.4 g/m2;
Fine ash ≈ 1% of total ash mass.

[62] Etna 2013 OLI, MODIS, and
SEVIRI

“Dark pixel” procedure
and PEM

Landsat cloud height varies from about
6 up to 9.5 km (a.s.l.).

MODIS cloud height is 8.9 km (a.s.l.)
with an uncertainty of +/− 500 m.

SEVIRI clout top height is 10.5 km (a.s.l.)
with an uncertainty of +/− 500 m.
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Table 1. Cont.

Reference Case Study Data Source Retrieval Method Main Outcomes

[34] Raikoke 2019 TROPOMI FP_ILM

SO2 plume height ≈ 13 km (a.s.l.).
SO2 layer height with an accuracy better

than 2 km for SO2 total column
densities > 20 DU.

[63] Holuhraun 2014 IASI
OE method, Forward

model, and DOAS
technique

SO2 masses showed a maximum of
0.25 Tg.

[64] Etna 2018 MODIS LSTM-CA Total accuracy of volcanic ash cloud
identification reached 96.1%.

[65] Bogoslof 2016-17 ABI, AVHRR,
MODIS, and VIIRS BTD

The 10 largest events each had a total
erupted mass > 1 × 109 k.

Total mass for 28 events was
5.7 × 1010 kg.

Maximum mass eruption rate 1 × 105 to
4 × 106 kg/s−1.

18 of the volcanic clouds reached
> 8.5 km (a.s.l) with uncertainty of 10%.

[66] Etna 2013 OLI
Height-From-Shadow
technique and Plume

Elevation Model (PEM)

For cloud 1, 84 height measurements
were made over the 7.7 km of its

downwind extent. There was a gap of
22 km where no cloud was apparent.

For cloud 2, for which there were
62 height measurements, extended

19.5 km to the image.

[22] Etna 2018 SEVIRI

MS2RWS (MeteoSat to
Rapid Response Web

Service) algorithm,
AVHotRR routine

Volcanic plume height ≈ 8 km (a.s.l).
Ash total mass ≈ 35 kt.
SO2 total mass ≈ 100 kt.

SO2 flux peaks ≈ 600/kg/s and mean of
≈ 185 kg/s.

[35] Sinabung 2018 TROMPOMI, AHI,
SEVIRI, and CALIOP

VADGUS, FRESCO,
O22CLD, and ROCINN

algorithms

ROCINN height is very similar to the
FRESCO R2 = 0.98 from 0.5 and 14 km.

The O22CLD and ROCINN are
corresponding.

FRESCO heights exceeded 15 km (a.s.l).

[67]
Eyjafjallajökull 2010
& Puyehue-Cordón

Caulle 2011
SEVIRI and CALIOP SDA, GA, LSSVR

1D-VAR, and BTD

ACTH combination between methods
vs. CALIOP VTH

Eyjafjallajökull 2010:
SDA-GA-LSSVR R2 = 0.77;

GA-LSSVR R2 = 0.74;
LSSVR R2 = 0.67;

1D-VAR algorithm R2 = 0.38.
Puyehue-Cordón Caulle 2011:

SDA-GA-LSSVR R2 = 0.79;
GA-LSSVR R2 = 0.68;

LSSVR R2 = 0.60;
1D-VAR algorithm R2 = 0.27.

[68] Etna 2018 MODIS FF–CNN–LSTM method Classification accuracy 88.4%.
Kappa coefficient = 0.8011

[69] Etna 2018
SEVIRI, MODIS,

VIIRS, TROPOMI,
AIRS, and IASI

“Traverse” approach

Plume height ≈ 8 km (a.s.l.)
Total SO2 flux uncertainty estimated to
be about 45% (using SEVIRI). TROPOMI

and IASI show more sensitivity.
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Table 1. Cont.

Reference Case Study Data Source Retrieval Method Main Outcomes

[70] Eyjafjallajökull 2010 SEVIRI BTD, LUT, and RTM
based on DISORT

Mass concentration and optical depth at
the wavelength of 0.355 mm.

R2 = 0.79 and 0.73, respectively; root
mean square error (RMSE) = 0.17 and

0.18; mean absolute error (MAE) = 0.11
and 0.14.

[71] Etna 2012 IASI AEROIASI algorithm
and RTM- TOVS

SO2 peaks at 9.5 km and 11.5 km.
Total uncertainty for column mass

concentration estimations 35%.

[72]

2008 Kasatochi,
2014 Kelud, 2015
Calbuco & 2019

Raikoke

OMI FP_IML Plume height error 1–2 km.

[73] Raikoke 2019 TROPOMI, OMPS
Limb profiler (LP) DOAS and PCA

Plume height from 19 to 26 km (a.s.l).
Error ≈ 200 m.

Peak of stratospheric AOD recorded at a
wavelength of 674 nm.

[74]

Raikoke 2019, Taal
2020, Nishinoshima
2020 & La Soufriére

2021

TROPOMI, IASI, and
CALIOP

FP_ILM and IASI
ULB/LATMOS

SP5 LH, IASI/LATMOS, and mean
difference results, respectively:
Raikoke, 2019 = 10.18 ± 2.79

km/10.03 ± 0.99 km/−0.15 ± 2.83 km;
Taal 2020 = 12.13 ± 3.95 km/

9.51 ± 1.78 km/ −2.62 ± 3.0 km;
Nishinoshima 2020 = 0.73 ± 1.97 km/

8.0 ± 1.04 km/0.27 ± 2.79 km;
La Soufrière 2021 = 14.94 ± 3.87 km/

15.7 ± 1.16 km/0.76 ± 3.69 km;
S5P SO2 LH and the CALIOP with bias

at −2.5± 2 km.

[13]

Raikoke 2019,
Sierra Negra 2018,

Ulawun 2019 &
Etna 2021

TROPOMI

Iterative
Covariance-Based

Retrieval Algorithm
(COBRA)

SO2 LH error by a factor of 2 to 3
compared to the DOAS algorithm.

SO2 LH accuracy is 1–2 km for SO2 as
low as 5DU.

[75]
Hunga

Tonga-Hunga
Ha’apai 2022

ABI, AHI COSMIC-2,
and Spire

Photogrammetry,
Automated Stereo-Winds
Method, and GNSS-RO

technique

Plume height top at 50–55 km (a.s.l).
GNSS-RO shows most of the plume mat

30–40 km (a.s.l).

[28] Eyjafjallajökull 2010 SEVIRI VADUGS retrieval
algorithm

Correlation (0.49), MAPE (90%), MPE
(+55%), and RMSE (0.41 g m−2) show

that VADGUS can distinguish between
thinner and thicker ash pixels although

cloud top height is usually strongly
underestimated.

[76]

Eyjafjallajökull
(2010) and

Puyehue-Cordón
Caulle (2011)

SEVIRI VACOS algorithm

Probability of detection (POD) of more
than 90% and a false alarm rate (FAR) of

ca. 1%.
Mean absolute error ≈ 40% or less for
ash layers with an OT at 10.8 µm of 0.1

or more.
ACTH error ≈ 10% for ash above 5 km.
Effective radius error of 35% for radii of

0.6–6 µm.
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Table 1. Cont.

Reference Case Study Data Source Retrieval Method Main Outcomes

[77] Raikoke 2019 Sentinel-3 SLSTR and
MODIS NN algorithm and BTD Volcanic cloud detection accuracy of

93% to 99%.

[78] Tonga-Hunga
Há’apai 2022 OMPS-LP

Multi-wavelength
aerosol extinction

algorithm (OMPS LP
operational algorithm)

Top height registered was 50 km (a.s.l.).

[79] Etna 2020 & 2022 SEVIRI
Machine learning SVM
and combination of TIR

bands
Ash detection accuracy of 86%.

The detection and quantification of ash and SO2 have been performed using several
multispectral instruments, such as the moderate resolution imaging spectroradiometer
(MODIS) [11,26,30,31,37,39,42,44,45,51,55,56,58,61,62,64,65,68,69,77], SEVIRI [21,22,28,31,
37,38,42,44,47,48,50,52,54,57,62,67,69,70,76,79], multifunction transport satellite (MTSAT)-
1R and MTSAT-2 imagers [46], AHI [32,35,75], advanced baseline imager (ABI) [65,75], and
multi-angle imaging spectroradiometer (MISR) [36,37,40]. Hyperspectral instruments, such
as the infrared atmospheric sounding interferometer (IASI) [12,38,48,49,53,63,69,71,74] and
atmospheric infrared sounder (AIRS) [11,38,58,69], have also been used. Other instruments,
such as the advanced very high-resolution radiometer (AVHRR) [11,36,37,45,53,65], visible
infrared radiometer (VIRR) [39], operational land imager (OLI) [62,66], visible/infrared im-
ager radiometer suite (VIIRS) [61,65,69], and sea and land surface temperature radiometer
(SLSTR) [77] have been used for ash retrieval. SO2 retrieval in the UV region is commonly
performed using hyperspectral sounders, such as OMI [38,43,60,72], scanning imaging
absorption for atmospheric cartography (SCIAMACHY) [43], global ozone monitoring
experiment-2 (GOME-2) [38,43,49], TROPOMI [13,34,69,74], and ozone mapping and pro-
filer suite (OMPS-LP) [73,78]. Vertical profilers, such as cloud aerosol lidar with orthogonal
polarization (CALIOP) [35,57,58,67,74], which is an active sensor in the microwave spec-
trum (radar) capable of providing vertical profiles of volcanic clouds, allow for more
accurate plume height estimations when data are available.

The most commonly applied method for detecting volcanic plumes and clouds using
the IR multispectral instruments mentioned above is BTD [29,33]. The brightness tempera-
ture of the two bands, located at wavelengths of 11–12 µm for ash and at 7.3 and 8.7 µm for
SO2, were used to discriminate between volcanic and meteorological clouds, allowing for
detection and monitoring. The BT is also used for quantitative retrievals of the total ash
mass, effective radius, and aerosol optical depth (AOD) to retrieve these parameters (a mi-
crophysical model is used in conjunction with brightness temperatures measured at 11 and
12 µm [80,81]. To perform these calculations, simulated top-of-atmosphere (TOA) radiances
are generated using a radiative transfer model (RTM) [12]. The TOA-simulated radiances
are computed based on atmospheric profiles (pressure, temperature, and humidity—PTH),
surface characteristics (temperature and emissivity), volcanic plume geometry (plume
altitude and thickness), and the optical properties of volcanic ash by setting a threshold.
The RTM can also be used to compute lookup tables (LUTs) [11,47,52,55,70], which are
commonly used for retrieval.

Another method used to analyze IR data is volcanic plume retrieval (VPR), a technique
created to extract the SO2 mass, effective radius, and optical depth of a volcanic cloud from
its thermal radiation at 8.7, 11, and 12 µm [47,52,55]. It stands out for its simplicity of use
and computational speed, which make it particularly effective for monitoring. It is based
on the estimation of a virtual picture that represents what the sensor would have observed
in a multispectral thermal image if a volcanic cloud were not present. As soon as new
satellite images of an eruption become available, the VPR technique may provide updated
estimates of ash and SO2 with plume temperature as an extra input. A new atmospheric
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model for estimating cloud transmittance was introduced by Pugnaghi et al. [55], which
improved the percentage difference between the average input data of the synthetic images
and the mean results of the VPR from 4 and 68% to 0 and 21%, respectively.

Other methods developed for ash cloud detection have shown excellent results. Robust
satellite techniques (RSTs) are a multi-temporal data analysis approach that considers every
anomaly in the space–time domain as a deviation from an “undisturbed” state, specific
for each location and time of observation in specific [31,32,36,37,46]. RST has a success
rate of 90.1% for ash detection when applied to polar orbit instruments, such as AVHRR
and MODIS [37], geostationary instruments, such as SEVIRI and AHI, and data from out-
of-service MTSAT-1R and MTSAT-2 imagers [31,32,46]. Although these methods strongly
rely on BTD, they overcome the limitations of defining fixed thresholds as in traditional
methods. The application of principal component analysis (PCA) [30,51,73] to MODIS data
has also shown good results [30,51].

Stereo techniques [40,41,45,54,75] have also been applied for plume height retrieval.
Scollo et al. [40] used MISR and analyzed the data using MINX software to retrieve plume
heights with uncertainties of <500 m. The MISR stereo plume heights in Ekstrand et al. [45]
were compared with traditional BTD method height retrievals. This comparison between
the results from the ash dispersion models and aircraft gas flight data confirmed that radar
and MISR stereo heights are more accurate than basic satellite temperature heights. The
main limitation of applying MISR data is the low temporal resolution of this instrument
with a 9-day revisit time. It uses several cameras to examine the Earth’s surface from
various angles, allowing for the extraction of 3D data despite its stereo-viewing capacity,
which is restricted to specified viewing angles.

More recently, procedures applying machine learning, such as that of Piontek et al. [76],
developed a new ash retrieval method using artificial neural networks (ANNs) with an ash
detection probability of >90%. Similar results show the benefits of adding machine learning
to the retrieval procedures using neural networks (NNs) and a support vector machine
(SVM), allowing for an automatic and less time-consuming process and reducing the error
of attributing a fixed temperature threshold with accuracy for ash detection > 85% [77,79].

For SO2 retrievals in the IR region, IASI and AIRS showed great sensitivity in retrieving
heights above 5 km, even for low vertical column densities of 1 dobson unit (DU). However,
in the UV spectral band, susceptibility to SO2 is higher at lower elevations, and the DOAS
method has been widely applied, allowing fast retrieval. Other sensors, such as the OMPS-
LP, can provide relatively high-vertical-resolution aerosol profiles from measurements
of scattered solar radiation in the 290–1000 nm spectral range, allowing accurate height
retrievals [78].

New strategies based on inverse learning machine schemes, developed by Efremenko
et al. [59] for GOME-2 and, more recently, for TROPOMI and OMI, have increased com-
putational efficiency over earlier methods, allowing near real-time retrievals with great
accuracy. However, these sensors are highly affected by atmospheric conditions, which is a
major limitation, particularly for large volcanic eruptions.

Theys et al. [13] developed the covariance-based retrieval algorithm (COBRA). COBRA
is combined with an iterative LUT to apply TROPOMI measurements taken aboard the
Sentinel-5 Precursor spacecraft, which has a spatial resolution of 3.5 × 5.5 km2. TROPOMI
captures locally enhanced SO2 columns with a higher resolution than prior sensors such as
the OMI. This technique addresses the nonlinear contribution of SO2 to the measured signal,
significantly reducing the spectral interference and retrieval noise. This combined retrieval
technique improves the sensitivity of estimating both SO2 vertical column density (VCD)
and SO2 layer height, eliminating the requirement for time-consuming online radiative
transfer simulations.

4.2. B- Ground-Based Remote Sensing for Volcanic Plumes and Cloud Monitoring (n = 24)

Table 2 summarizes the articles included in the systematic review of the use of ground-
based remote sensing approaches for detecting and monitoring volcanic clouds. The main
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objective was to identify the most common ground-based instruments and methods for ash
and SO2 monitoring.

Table 2. Summary of articles related to ground-based remote sensing for volcanic cloud monitoring
(n = 24).

Reference Case Study Data Source Retrieval Method Main Outcomes

[7] Grímsvötn 2011 C-band and X-band
weather radar Rainbow 5 Software Plume top height ≈ 20 (21 May 2011).

R2 = 0.67.

[82] Etna 2010 VAMP LiDAR
Klett–Fernald and

Polarization LiDAR
technique

Ash concentration estimation with an
uncertainty of 50%.

[83] Etna 2010 VAMP LiDAR Klett inversion

Plume height ≈ 5 km.
Ash concentration = ±24,000 ±

6000 mg/m−3.
Systematic uncertainty of 50% on the

retrieved value of mass concentration is
related to an effective radius of 10 mm

for ash.

[6] Shinmoedake 2011

COMPUSS (USB2000
or USB2000+

spectrometers from
Ocean Optics)

Differential optical
absorption spectroscopy

(DOAS) method

Total SO2 emission ≈ 280 kt.
SO2 flux > 10,000 ton/day.

[84] Grímsvötn 2011 Keflavík C-band
weather radar VARR methodology Plume top height ≈ 20.

Mean MER ≈ 4.44 × 1011.

[85] Redoubt 2009 Doppler C-Band
Radar (MM-250C)

Standard atmospheric
refraction model Plume top height ≈ 19 km (3/26/09).

[86] Stromboli 2013

FLAME network of
scanning UV

spectrometers and
SO2 camera

monitoring system

Flux Automatic
Measurement in

real-time analysis

SO2 flux measured with SO2 camera
agrees well with FLAME network.

[87]
Stromboli 2013,

Karymsky 2011 &
Láscar 2012

NicAir IR Camera
Algorithm based on

Temperature Difference
and Optical flow method

Stromboli: Mean ash flux
53.0 ± 25.8 kg/s.

Total fine ash emitted ≈ 4 t/SO2 masses
≈ 51–160 kg.

Karymsky: Ash cloud height > 2000 m
(a.v)/Total fine ash mass >10 t/Fine ash

Mass flux of ≈ 150 kg/s.
Láscar: SO2 mean flux ≈ 130 t day.

Errors in fine ash SCDs in the range of
20–50%.

[88] Etna 2011 Visible and thermal
cameras and LiDAR Klett–Fernald algorithm

Plume top height ≈ 8.5–9 ± 0.5 km
(12 August 2011).

Concentration of volcanic ash fixed to
2450 kg/m3 with 55% of uncertainty.

[89] Calbuco 2015
C-band INVAP S.E.

Radar system
(5.6 GHz)

Standard atmospheric
refraction model

Plume top height ≈ 22.8 ± 2.1 km
(a.s.l.).

[90] Bárðarbunga
2014–15

UV-sensitive Ocean
Optics Maya2000 Pro DOAS Method Post-eruption outgassing of

SO2 = 3 ± 1.9 kg/s.

[91] Pacaya 2011 MIcrotops-II
Sun-Photometer

Background atmosphere
Correction AODs < 0.1.
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Reference Case Study Data Source Retrieval Method Main Outcomes

[92] Etna 2010–2011 Multi-Wavelength
Raman LiDAR VALR-ML methodology

Etna 2010: Ash average concentration is
about 8.63 ± 6.04 mg/m3.

Mean diameter is about 3.37 ± 2.04 µm.
Concentration uncertainty 40% up to

43% and mean diameter 7%.
Etna 2011: Ash plume height = 6.5–8 km

(a.s.l).
Average concentration is about

65.00 ± 37.3 mg/m3.
Mean diameter is about 3.01 ± 1.2 µm.
VALR estimations with backscattering

coefficient error of 50%.

[93] Etna 2011–2015 L- Band Doppler
Radar VARR Plume height 15 km (a.s.l.).

MER from 2.96 × 104 to 3.26 × 106 kg/s.

[94] Fuego 2017 FLIR Photo n640
camera

Segmentation algorithm
based on BTD, space

carving algorithm, and
Multiview 3D ash plume

reconstruction

Plume height between 1000 m and
>2000 m (a.v.).

Volume between 2 × 108 m3 and
8 × 108 m3.

[95] Calbuco 2015
C-band INVAP S.E.

radar system
(5.6 GHz)

Concept of
Equivalent Sphere

Plume height = 25 km (a.s.l.).
Total emission was 2.34 × 1012 kg.

[96] Etna 2015 FTIR single pixel and
a UV camera

LATMOS Atmospheric
Retrieval Algorithm
(LARA) and DOAS

ultraviolet spectroscopy

Underestimation of the SO2 slant
column densities (SCDs) of the UV

camera by a factor of 3.6.

[97] Etna 2013 L- and X-band
Doppler Radar

VARR methodology MER
estimation using SFA,

MCA, and TPA
methodologies

TPA-DB12 = 4.3 ± 1.0 × 109 kg.
TAO-MA09 = 1.7 ± 0.4 × 109 kg.

SFA using TIC data = 4.7 ± 1.3 × 109 kg.
SFA using L-band VDR =

4.2 ± 1.0 × 109 kg.
MCA using X-band MWR and SFA

using X-band
MWR = 3.9 ± 0.9 × 109 kg.

[8] Etna 2015 Hyper IR Camera
LATMOS Atmospheric

Retrieval Algorithm
(LARA)

Accuracy of the classification with
R2 = 0.94.

SO2 flux error = 16%.

[98] Yasur 2018 PiCam UV Optimal flow method
and PIVlab in MATLAB

SO2 fluxes ranged from 4 to 5.1 kg s−1,
uncertainty of −12.2% to +14.7.

[99] Etna 2019 UV-sensitive CMOS
sensor

Imaging Fabry–Pérot
interferometer

correlation spectroscopy
(IFPICS)

SO2 mass flux of = 84 ± 11 td−1.
Limit for the SO2 measurement is

5.5 × 1017 molec. cm−2s−1/2.

[100] Etna 2016 Dual-Wavelength
Polarimetric LiDAR

VALR Maximum
Likelihood (ML), Single

Regressive (SR), and
Multi-Regressive (MR)

VALR and ML ash concentrations
0.1 µg/m3 and 1 mg/m3 and particle

mean sizes of 0.1 µm and 6 µm,
respectively.

SR method differences are less
than <10%.
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[101] Cumbre Vieja 2021 Micropulse LiDAR
Polarization LiDAR

Photometer Networking
(POLIPHON) algorithm

Plume height ≈ 2.8 km (15 November).
Highest ash load (18 October) with a

range of 800–3200µg m−3.
Ash backscatter coefficient, aerosol
optical depth, volume, and particle

depolarization ratios were, respectively,
3.6 (2.4) Mm−1sr−1, 0.52 (0.19), 0.13
(0.07), and 0.23 (0.13) on 18 October

(15 November).

[102] Cumbre Vieja 2021

CL51 and CL61
ceilometers (LiDAR)
and AERONET sun

photometers

Wavelet Covariance
Transform (WCT)

method

Plume height ≈ 4 km (a.v.l).
Ash mass concentration 313.7 µgm−3.

Ground-based remote sensing allows for more precise vertical profiling of volcanic
plumes as well as additional data and interaction with existing networks. However, it has
limitations in terms of spatial coverage, weather dependency, field of view, and difficulties
associated with inverse modeling, accessibility, and operational costs.

Three types of instruments are commonly used for ground-based remote sensing
monitoring: ground-based weather radar and LiDAR [7,82–85,88,89,92,93,95,97,100–102],
IR/UV cameras [8,86–88,94,96,98], and UV spectrometers [6,86,90,91,99,102].

LiDAR can perform direct measurements of plumes, allowing real-time monitoring
of the changes in the optical properties of volcanic aerosols. Scollo et al. [82] developed
a technique using a volcanic ash monitoring by polarization (VAMP) LiDAR system that
allows the detection of elastic backscattering radiation at 532 nm using depolarization tech-
niques for particle estimation. This technique accounts for uncertainties ranging from 40 to
50% in retrievals [83], despite its real-time monitoring capabilities. Another retrieval algo-
rithm applied by Mereu et al. [92,100] is a physically based inversion methodology named
volcanic ash LiDAR retrieval (VALR), based on the maximum likelihood (ML) and using
dual-wavelength Raman LiDAR with robust results. The fundamental limitation of em-
ploying LiDAR technology is the signal degradation caused by optically dense cloud layers.
However, this constraint is primarily related to massive explosive volcanic eruptions.

Marzano et al. [97] proposed and applied the volcanic ash radar retrieval (VARR)
to S-, C-, L-, and X-band weather radars. The VARR technique, which uses a Bayesian
classification and optimal regression algorithm, is based on the active tracer high-resolution
atmospheric model (ATHAM) algorithm, a physical statistical methodology based on
the backscattering microphysical model of volcanic particles (hydrometeors, ash, and
aggregates).

In addition, UV spectrometers, such as the DOAS technique, are frequently employed
for ground-based SO2 flux and total mass monitoring. FLIR, hyperspectral IR, and UV
cameras are other efficient remote sensing systems frequently used in networks, such as
FLAME [86]. Segonne et al. [8] used hyperspectral IR photography, especially Hyper-Cam
technology, to assess the SO2 emission flux in near real-time from Etna. They created a
classification system for IR hyperspectral images of volcanic plumes and used the “box
method” to estimate SO2 emission flux with 84% accuracy. Fuchs et al. [99] demonstrated
the viability of quantitative imaging of volcanic SO2 flux using imaging Fabry–Pérot
interferometer correlation spectroscopy (IFPICS), which provides enhanced calibration
and expanded field-measuring capabilities. Ilanko et al. [98] used UV cameras to assess
explosive (Strombolian) gas masses and found links between gas production, conduit
sealing, and intensity of explosions. Wood et al. [94] developed a proof of principle for
reconstructing ash plumes utilizing NicAIR IR camera systems. This approach can be used
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to discriminate ash plumes from the ground or background sky, with limits and possible
sources of error.

4.3. C-Airborne/UAV-Based Remote Sensing for Volcanic Plumes and Cloud Monitoring (n = 5)

Table 3 summarizes the articles included in the systematic review regarding the use
of airborne/UAV-based remote sensing approaches (data sources, retrieval methods, and
main outcomes) for monitoring volcanic clouds.

Table 3. Summary of articles related to airborne/UAV-based remote sensing for volcanic cloud
monitoring (n = 5).

Reference Case Study Data Source Retrieval Method Main Outcomes

[10] Eyjafjallajökull
2010

FAAM Bae-146 airplane
LiDAR and OPC

In situ airborne
measurements of the

ash cloud

Concentration of particles > 400 nm.
Mass concentration 77 µgm−3.

[103] Ontake 2014

Multirotor UAV (αUAV series)
with MultiGAS box (black box)

InfReC G120EX, Nippon
Avionics Co. Ltd., Japan

DOAS technique and
plume sampling

SO2 flux > 2000 t/d at least until 20 h
after the eruption.

[104] Fuego 2018 RiteWing Zephyr II
Skywalker X8

Secondary Electron
Microscopy (SEM) ash

collection

Appropriate collection mechanism,
aerial sampling of ash, with a

representative PSD from within
a plume.

[105] Stromboli sUAV with a 4k camera Interaction between
motors and ash

Interactions with fine ash < 250 µm
motor blockage happened.

[9] Yasur 2018 DJI Phantom-3 UAV Photogrammetry Plume volume ~3430 m3 ± 512 m3.

In situ (eruption site) airplane observations are appropriate for comprehensive ash
measurements of the particle size distribution (PSD) and concentration [10]. UAV-based
approaches [103,104] are advantageous for monitoring volcanic plumes from close and
secure distances, particularly in remote or hazardous locations. Furthermore, these ap-
proaches allow for effective sample collection mechanisms (e.g., aerial sampling of ash
with a representative plume PSD). Photogrammetry provides geographical information
and 3D modeling of volcanic plumes [9]. However, all these approaches have limitations
and must be carefully selected according to the research aims and restrictions of the study
area. Brosch [105] analyzed the stress factors associated with the deployment of UAVs in
volcanic areas, such as strong winds, high temperatures, incandescent volcanic particles,
and corrosive gases in the atmosphere.

4.4. D-Multiplatform Approaches for Volcanic Plumes and Cloud Monitoring (n= 9)

Table 4 summarizes the articles included in the systematic review of the use of multi-
platform remote sensing-based approaches (study cases, data sources, retrieval methods,
and main outcomes) for monitoring volcanic clouds. As demonstrated above, satellite ob-
servations provide extensive geographical coverage and long-term monitoring capabilities.
However, there are drawbacks, including the lack of high spatial resolution and difficulties
in distinguishing between different volcanic plumes [106].
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Table 4. Summary of articles related to multiplatform approaches for volcanic cloud monitoring
(n = 9).

Reference Case Study DATA SOURCE Retrieval Method Main Outcomes

[106] Okmok 2008 CALIOP, OMI, and
MFDOAS

LF algorithm, offline ISF, and
DOAS technique

Plume heights ≈ 11.5 km ± 1.5 km.
Vertical column density

(VCD) = 1.75 ± 0.16 DU and 1.22 ± 0.18
DU (OMI) 3.11 ± 0.23 DU

(DS-MFDOAS) (SO2).
Total erupted mass (SO2) ≈ 0.6 Tg (OMI).

[16] Kasatochi
2008

CABRIC DOAS
instrument and

GOME-2

DOAS technique,
Monte Carlo Atmospheric

Radiative Transfer and
Inversion Model (McArtim)

R2 = 0.84 (SO2 vertical column by
GOME-2 vs. averaged CARIBIC values).

Plume heights
≈ 11 km.

VCD ≈ 3 × 1017 molec/cm2 (SO2).
Total erupted mass (SO2)

≈ 1.5–2.5 Tg.

[107] Etna 2006
UV Scanner DOAS

(FLAME NETWORK),
MODIS IASI

BTD, MODRAN (RTM), and
DOAS technique

R2 = 0.87 (6 of December).
SO2 flux ≈ 6700 t/d (FLAME SO2) and ≈

5800 t/d (MODIS SO2) 6 of December.

[108] Etna 2011

MODIS, IASI,
GOME-2, and UV

Scanner DOAS
(FLAME NETWORK)

IASI-UNIOX algorithm, ULB
algorithm

MODIS least square fit, and
RAL product based on the

Optimal estimation

FLAME SO2 mass = 4.5 Gg.
Differences for satellite:

MODIS = 10%;
IASI = 15%;

GOME-2 = 30%.
SO2 flux correlation coefficient between

MODIS and FLAME is 0.84.

[109] Holuhraun
2014

OMI, OMPS, and
Brewer

spectrophotometer
PCA, BRD, and LF

Brewer SO2 total column record
value = 13.9 DU.

6 September SO2 columns are 2.59 DU
from BRD algorithm and 2.79 DU for PCA
with great agreement, while the Brewer

measurement gives 4.4 DU.

[110] Etna 2013 SEVIRI, MODIS, IASI,
DPX4, and Camera

VPR (SEVIRI), VARR (DPX4),
BTD (MODIS/SEVIRI), and

Optimal estimation with
RTTOV (IASI)

1–2% of total ash was airborne.
Plume heights up to 12.6 km.

Ash mass retrieval maximum difference
before and after the multisensor approach

is about 40%.

[111] Etna
2011/2013

SEVIRI and
VIVOTEK IP8172P

BT of the coldest pixel with
the atmospheric temperature
profile and Visual methods

Plume height of 15 km (a.s.l.).
Uncertainty of the plume height was set

to +/− 500 m.

[112] Etna 2011

VOLDORAD-2B
(V2B) scanning

microwave weather
radar (MWR), SEVIRI

MODIS, and IR
Camera

ECV, SFA, NSA, TPA, MCA,
VPR-ash, and VPR-ICE

2011 (Average MER):
V2B = 3.1 ± 0.7 × 105;

MWR = 1.7 ± 0.6 × 106 kg/s;
IR Camera = 7.5 ± 4.7 × 105 kg/s;

SEVIRI = 2.7 ± 2.5 × 104 kg/s;
MODIS = 2.6 ± 3.1 × 102 kg/s.

2012 (Average MER):
V2B = 1.5 ± 1.3 × 105 kg/s;

MWR = 1.4 ± 0.9 × 105 kg/s;
IR Camera = 8.6 ± 2.5 × 104 kg/s;

SEVIRI = 1.4 ± 1.8 × 106 kg/s;
MODIS = 2.6 ± 3.1 × 102 kg/s.

[15] Etna 2020 to
2022

INGV-OE monitoring
system

GNSS, Infrasonic Stations,
UV scanners, and VIS/IR

cameras

Maximum plume heights (a.s.l.):
13–14 December 2020 = 5.5 km;

28 February 2021 = 12.6 km;
12 March 2021 = 9 km.
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Merucci et al. [107] used ground-based observations with satellite retrievals, with
results presenting correlations of R2 = 0.87 for SO2 flux measurements. This approach
proved that the reconstruction of SO2 fluxes is possible with MODIS data when ground-
based monitoring is unavailable.

Aircraft measurements include those using the Civil Aircraft for the Regular Investiga-
tion of the Atmosphere Based on an Instrument Container (CARIBIC) flying observatory
DOAS instrument and GOME-2 satellite data. They give extra insights and support satellite
observations with R2 = 0.84 (SO2 vertical column observed by GOME-2 vs. averaged
CARIBIC values). However, their availability is limited, and it is possible that they do not
fully reflect the spatial extent of volcanic emissions [16].

As mentioned by Corradini et al. [15,93,106,110], multisensor techniques require a
combination of data from several platforms and equipment. These techniques allow a
better understanding of volcanic emissions, eruption dynamics, and source characteris-
tics. Complete and reliable datasets were obtained by successfully integrating satellite
observations, ground-based networks, and aircraft measurements, thus compensating for
the shortcomings of individual techniques. Among other characteristics, tephra fallout,
eruption mass discharge rate, and plume height have all been accurately assessed using
multisensor techniques, with an improvement in results of the order of 40%.

Several studies (e.g., [15,106,111,112]) have demonstrated the value of merging satel-
lite retrievals with ground-based networks to confirm and improve the precision of SO2
measurements and near real-time tephra fallout assessments.

Overall, the accuracy and reliability of volcano monitoring can be significantly im-
proved by integrating multiplatform remote sensing systems, including satellite observa-
tions, ground-based networks, aircraft measurements, and multisensor approaches. By
overcoming the shortcomings of individual strategies, these approaches offer a thorough
and in-depth understanding of volcanic emissions, eruption dynamics, and the associated
volcanic hazards.

4.5. E-Remote Sensing Data Assimilation into Numerical Forecasting Models (n = 28)

Table 5 summarizes the articles included in the systematic review of remote sensing
data assimilation into numerical forecasting models. These studies focused on the appli-
cation of various VATDMs and instruments to analyze volcanic ash and SO2 dispersal
and their impact, compare satellite, ground-based, and UAV/aircraft data with numerical
simulations, validate models with field data, improve volcanic ash predictions, increase the
understanding of eruption dynamics, and assess the transport of volcanic aerosols over
long distances.

Table 5. Summary of articles related to remote sensing data assimilation into numerical forecasting
models (n = 28).

Reference Case Study Data Source Retrieval Method Main Outcomes

[113] Etna 2001 &
2002

MIRS and FALL3D
Model

MINX V1.0 Software and
Bouyant Plume Theory

(BPT)

Plume height ≈ 5 km (23/07/2001) and
6 km (2002).

[18] Kasatochi 2008
& Okmok 2008

OMI, MFDOAS, AVHRR,
and MLDP0 Model

LF algorithm, offline ISF,
and DOAS technique and

BT method

SO2 concentration =
SO2—8.7 DU (18 July); 5.8 DU (19 July).

Plume heights ≈ 10–16 km.

[114] Etna 2002 MODIS and FALL3D BTD and MODRAN
(RTM)

MODIS total ash mass ≈ 20 to 45 kt.
FALL3D total ash mass ≈ 35 to 60 kt.

Mean AOD ≈ 0.8 µm.
Good agreement in the first 300 km.

Retrieval errors = 40% and 30% for total
ash mass and mean AOD.
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Table 5. Cont.

Reference Case Study Data Source Retrieval Method Main Outcomes

[115] Eyjafjallajökull
2010

Three-dimensional
Eulerian Chemistry

Transport Model
(CMAQ),

AERONET Network
DRL falcon

Comparison between
model AOD and
AERONET AOD

Agreement was achieved for lower
emission heights.

[116] Grímsvötn 2011 C-band weather radar
and ATHAM Model VARR

The results show a good agreement
between simulations and

measurements.

[117] Eyjafjallajökull
2010

NAME Model and FAAN
Bae-146

Comparison between
PSD Aircraft and NAME

simulations

On 5 May, quantitative agreement
between NAME simulations and

observations for particles with
diameters between 10.0 and 30.0 µm.

[118] Eyjafjallajökull
2010

IASI and CHIMERE
Model BTD

Inversion procedure combining IASI
satellite observations and CHIMERE
allows reconstruction of the SO2 flux.

[119] Chaitén 2008 MODIS and FALL3D
Model BTD

Agreement between simulations and
observations; differences result from

model.

[120] Eyjafjallajökull
2010

MERIS, ASTER, and
VOL-CALPUFF Model

Shadow Technique and
BTD and RTM

Plume heights 5–10 km.
Retrieved remote sensing data and

model reliable up to a scale of hundreds
of kilometers, showing good agreement.

[121] Grímsvötn 2011 IASI and FLEXPART
Model Inversion Method

SO2 emission = 0.61 ± 0.25 Tg.
Fina ash emission = 0.49 ± 0.1 Tg.

Diameter = 2–28 µm
Simulation bias = 44%.

[122] Kelut 2014 AHI and CALIOP
FLEXPART BTD

Most ash injected into 16–17 km.
Modelled volcanic

concentrations = 9 ± 3 mg m−3.

[123] Ruapehu 1996 GOES-9 and
FLEXPART-WRF Models BTD method

Plume ratio had a large effect on
the model.

Uncertainties of plume height do not
have a significant impact on the model.

The model performance is strongly
dependent on the meteorological model.

[124] Kasatochi 2008 MODIS, CALIOP, and
HYSPLIT Model BTD method

MER calculated from observations:
MERfine = 2.8 × 104 kg s−1;
MERfine = 2.8 × 103 kg s−1;
MERfine = 2.8 × 105 kg s−1;
MERfine = 2.8 × 106 kg s−1.

[125] Kelut 2014 AHI and HYSPLIT
Model

BTD and Geostationary
Cloud Algorithm Testbed

(GEOCAT)

Very good qualitative agreement
between forecast and satellite

observations of BT, BTD, and ash
probability provided by GEOCAT.

[126] Grímsvötn 2011 SEVIRI and NAME
Model BTD

Clouds led to an average 6 to 12%
reduction detection of ash.

Simulations are in very good agreement
with observations.

[127] Sakurajima 2019 X-band MP Radar and
PUFF Model

Parallax-based method
and the Plume Elevation

Model (PEM)

Plume top 4 to 5.5 km (a.s.l.).
Total ash emission was 8800 tons.

Use of PUFF combined with MP radar
data provides accurate results.
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Table 5. Cont.

Reference Case Study Data Source Retrieval Method Main Outcomes

[128] Kasatochi 2008 MODIS, CALIOP, and
HYSPLIT Model Four-channel Algorithm

It is found that the emission estimates
vary significantly with different

variations in observations inputs.

[129] Kamchatka &
Kurilc Islands MODIS and PUFF Model VolSatView

A new tool developed for solving the
problems of integrated monitoring of

ash cloud transport.

[130] Etna 2013
AERONET network,
SEVIRI, and FALL3D

Model

BTD and LUT and Field
data

Plume height ≈ 8.7 km (a.s.l.).
TEM of ≈ 4.9 × 109 kg.

MER of ≈ 1.3 × 106 kg/s.

[131] Merapi 2010–11 AIRS, MIPAS, and
MPTRAC Model

MIPAS altitude-resolved
aerosol cloud index (ACI)

and Aerosol Index (AI)
and AIRS-optimized SO2

index based on BT
algorithm

Merapi sulfur contribution of 8800 t to
Antarctic lower stratosphere.

[132] Etna 2013
SEVIRI, MODIS, Rada, IR

Cameras, FPlume, and
FALL3D Models

Integration of field, radar,
and satellite TGSD to
inversion results with

FALL3D

Inversion TGSD yield 75 wt% of field
data, 25 wt% of radar. Best matching
PM20 for SEVIRI was from 3 to 6 to

9.0 wt%.

[133] Fuego 2018 IASI, PlumeTraj, and
Plume-MoM Models

Elementary radiative
transfer and a large

lookup table (detailed
in [134])

≈2 h 50 m climatic paroxysmal phase
MER ≈ 1.4 kg s−1.

Plume estimates 0.03 ± 0.004 km3.
SO2 emission ≈ 130 Kt.

[135]
Puyehue-

Cordón Caulle
2011

MODIS and HYSPLIT
Model

Geostatistical treatment
of BTD results and

HYSPLIT back-trajectory

Back trajectory accuracy of 80% within
60 km of the source volcano.

[136] Etna 2018 SEVIRI and Plume-Mom
and HYSPLIT Models

Ensemble square root
Kalman Filters

(EnSRKFs) and VPR

Accurate knowledge of ESPs is not
mandatory for model initialization with

the use of EnKFs for ash forecasting.

[137] Copahue 2016 OMI, HYSPLIT Model
Aerosol Index from

OMPS and OMI SO2
Algorithm

Good agreement between HYSPLIT SO2
concentrations and OMPS AI

estimations.

[138] Barren 2018 Sentinel-2, MODIS, OMI
LISS-IV, and HYSPLIT MIROVA algorithm Combination of sensor observations

with HYSPLIT proven effective.

[17] Raikoke 2019 FPlume Model and
Himawari

ICAN-ART integration
with FPlume

Reduction of mass overestimation from
37% to 18%.

Simulated spatial dispersion of the ash
and SO2 agrees well with Himawari-8

as our SAL analysis.

[139] Etna 2013
V2B Radar, OMPS, VIIRS,

SEVIRI, and
WRF-CHIMERE

WRF-Chem model
configured with eruption
source parameters (ESPs)
obtained elaborating the

raw data from the
VOLDORAD-2B (V2B)
Doppler radar system

Good comparison with satellite
retrievals.

A number of VATDMs such as Numerical Atmospheric-dispersion Modelling Envi-
ronment (NAME) [117,126], Modèle Lagrangien de Dispersion de Particules d’ordre zéro
(MLDP0) [18], FALL3D [113,114,119,132], CMAQ [115], Hybrid Single Particle Lagrangian
Integrated Trajectory (HYSPLIT) [124,125,128,135,136], PUFF [129], Massive-Parallel Trajectory
Calculations (MAPTRAC) [131], VOLC-CALL PUFF [120], PlumeTraj [133], PlumeMoM [133],
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chemistry transport model (CHIMERE) [118,139], and Fplume [17] have been used in conjunc-
tion with MISR, MODIS, SEVIRI, IASI, OMI, VIIRS, OMPS, AIRS, ABI, and AHI satellite
data, ground-based data [116,129,133,136,139], and UAV/aircraft-based remote sensing
data [117].

When comparing MISR data with numerical simulations of three-dimensional volcanic
aerosol dispersal using the FALL3D model, fluctuations in estimations were observed
when modifications in input data were performed [113], demonstrating the importance
of retrieving accurate data to input in dispersal models. A comparison between FALL3D
and satellite sensors was also performed using MODIS retrievals of ash clouds, and good
agreement was found between the retrieved data and simulation in the first 300 km from
the vent [114]. Boichu et al. [118] also used satellite retrievals with CHIMERE to account
for volcanic SO2 flux at a high temporal resolution for the 2010 Eyjafjallajökull eruption.
For instance, Crawford et al. [124] used satellite images of volcanic ash from the 2008
Kasatochi eruption to apply to HYSPLIT, while Wilkins et al. [126] used a data insertion
update strategy for the NAME model ash transport during the 2011 Grímsvötn eruption.

Ensemble-based data assimilation has also been used to minimize uncertainties and
enhance projections. Pardini et al. [136] used the HYSPLIT model to perform ensemble-
based data assimilation of volcanic ash clouds from satellite observations and found that
accurate knowledge of ESP is not mandatory for model initialization with the use of
Ensemble Kalman Filters (EnKFs) for ash forecasting.

In addition to these studies, Tanaka et al. [127] employed the PUFF model to estimate
volcanic ash plume dispersal for Sakurajima in 2019 using MP radar observations, resulting
in accurate results. Whereas Paez et al. [137] investigated volcanic SO2 and ash emissions
with good agreement between HYSPLIT SO2 concentrations and OMPS Aerosol Index
estimations, Gunda et al. [138] used HYSPLIT and satellite observations to model Sentinel-2,
MODIS, and OMI data. Using ground and satellite remote sensing data, Rizza et al. [139]
investigated the effects of variable ESP on volcanic plume transport during the 23 November
2013 paroxysm event of Etna. The study of Bruckert et al. [17] demonstrated that the online
treatment of eruption dynamics enhanced the forecasting of volcanic ash and SO2 dispersion
for the 2019 Raikoke.

Utilizing remote sensing data in conjunction with models can significantly improve
the accuracy and understanding of volcanic processes, thereby enabling the detection of
volcanic clouds and a more precise estimation of the initial eruptive parameters. This,
in turn, enhances volcanic dispersion models and facilitates decision-making procedures
during volcanic eruption operations.

5. Conclusions

The scientific community is highly knowledgeable about using remote sensing tech-
nologies to detect and monitor volcanic plumes and clouds. Various instruments, including
those on polar or geostationary satellites and ground-based platforms, such as radar, ther-
mal cameras, LiDAR, UAVs, and airplanes, can be used to measure the physical parameters
of volcanic ash and SO2.

Satellite detection methods are the most commonly used methods for the detection
and monitoring of volcanic clouds. This is due to the abundance of available sensors that
can obtain data every 10 or 15 min (AHI, SEVIRI, and ABI) or daily (MODIS, TROPOMI,
and IASI). However, the methods used to identify ash and SO2 and obtain their physical
parameters have certain limitations. One of the main limitations of IR methods is determin-
ing a fixed temperature threshold to discriminate between volcanic clouds and atmospheric
clouds, which introduces significant uncertainty into traditional methods such as BTD
when cloud coverage is extreme or when the cloud is opaque. One method that can reduce
this limitation is RSTash, which produces detection rates of >90% and provides a solution
that uses a dynamic threshold for temperature in the retrieval procedure. Computational
methods, such as statistical methods, neural networks, and deep learning algorithms (PCA
and VACOS algorithms), can also reduce this limitation by eliminating the need to identify
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fixed threshold values. These methods can decrease missed detection and operator error
during data processing. Still, they are limited only by the amount of data available for
training and the limitations associated with the sensor used to retrieve data. With the
growing amount of available data and the launch of new sensors with better resolution,
these methods have been shown to perform better and have the capacity to replace the
traditional methods.

Determining the height of volcanic plumes is one of the most important parameters
for estimating MER. However, this presents a significant challenge for IR sensors owing to
temperature inversion at tropopause or plume undercooling [65]. The stereoscopic methods
used in MISR, GOES, and SEVIRI produced good results, with a small error compared to
the temperature difference method.

UV hyperspectral sensors, such as TROPOMI, demonstrate an unrivaled capability
for SO2 retrieval, and the results are even more promising when combined with the new
COBRA algorithm, which reduces scattering and noise and improves detection accuracy.
However, one of its major limitations is scattering during cloudy weather, which precludes
accurate measurement.

Despite their numerous advantages, satellites have limitations. As discussed above,
most retrievals are made with high-temporal-resolution EO satellites to enable near real-
time data acquisition, which decreases the accuracy owing to the lower spatial resolution,
and the optical properties of each sensor are limited. Satellites with higher spatial res-
olutions, such as CALIOP and MISR, have low temporal resolutions of 16 and 9 days,
respectively. For example, when CALIOP data are available, they can be used to validate
the other methods.

Ground-based approaches using radar and LiDAR are well suited for providing
near real-time retrievals and complementing satellite data. In addition, networks of UV
spectrometers and IR/UV hyperspectral cameras such as FLAME and TIR camera systems
are crucial for the real-time monitoring of SO2 and ash retrievals. However, they also
have limitations: cameras and spectrometers are affected by weather conditions and are
limited by their field of view. Radar and LiDAR instruments also have limitations despite
providing a better resolution than satellites for PSD. Radar reflectivity is limited by the
shape of the particles and composition within the cloud, and they show limitations in
providing cloud top heights, owing to the complex vertical structure of volcanic clouds. In
addition, group instruments that require maintenance are limited to the locations where
they are installed and have significant acquisition costs.

Airborne/UAV-based approaches can be used to directly sample particles from vol-
canic clouds and provide precise PSD data. The limitations of these approaches include
the instrument payload capacity, flying range, atmospheric conditions, and cost associated
with the equipment, even if it is lower than that of other methods [104].

Although the reviewed studies have shown that the use of remote sensing is successful
during eruptions for the detection and monitoring of volcanic clouds, combining various
approaches is important for a better understanding of the volcanic ash dispersal dynamics.
When data are available, multiplatform approaches show the best results, overcoming
limitations intrinsic to each sensor and method and improving accuracy.

Numerical forecasting models play a crucial role in volcanic hazard management and
are used operationally by VAACs in conjunction with remote sensing techniques. The
assimilation of remote sensing data into VATDM has shown promising results for improving
volcanic ash forecasting. However, further research is needed to develop more advanced
data assimilation methods that can effectively combine various sources of remote sensing
data with model simulations and accurately compare observations with simulation results.

The fine-scale dynamics of volcanic ash clouds can be better understood by improving
the resolution of VATDM, which, together with remote sensing, can be a powerful tool for
the assessment of their impacts, including aviation safety evaluations. Underestimation
issues can be addressed using high-resolution modeling and enhanced satellite retrieval.
Future research should concentrate on integrating various remote sensing techniques, such
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as combining satellite thermal infrared data with radar or thermal infrared camera obser-
vations, when available, overcoming the spectral limitations of singular sensors, helping
to characterize the physical properties of volcanic ash better, and improving the accuracy
of ash cloud detection and tracking. Additionally, satellite data can be used to retrieve
ash optical properties, and geostationary systems can be employed to monitor volcanic
degassing, such as sulfur dioxide emissions. The absence of research addressing the impact
of wind shear on volcanic cloud dispersion, and the potential for more effective identifica-
tion of volcanic clouds from atmospheric clouds, was identified as a gap. It is known that
the transport of volcanic particles is largely influenced by winds within the troposphere
and/or stratosphere, with a particular emphasis on vertical wind shear [140,141]. Wind
shear has been demonstrated to enhance the accuracy of simulations when it is taken into
account [142].

The continuous evolution of remote sensing equipment with better resolution and
faster acquisition time (e.g., GOES-18 and Meteosat third generation), will allow for the im-
provement in existing applications and the development of new approaches and enable the
continuous monitoring of remote and difficult-to-access regions where ground monitoring
systems are scarce or non-existent.
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