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List of symbols 
↓ Decrease  

↑ Increase 

ANN Artificial neural network 

C-SVC C-support vector classifier 

DT Decision Tree 

KF Kalman filter 

GNB Gaussian naive Bayes 

KNN k-Nearest neighbours 

LR Linear regression 

LogR Logistic regression 

MLP Multilayer perceptron 

RF Random forest 



RHin Inside relative humidity 

RHout Outside relative humidity 

Tin Inside temperature 

Tout Outside temperature 

Ts Skin temperature 

Table S1. Synthesis of the main characteristics of occupant-centred systems based on users’ preference.  

 
1 For those papers that compared the algorithms’ performance, the best result is in bold.  

Reference Scope 
Duration 

of the 
study 

Identificatio
n of 

preferences 
Algorithm(s)1 Variables 

System 
assessment 

Algorithm 
assessment 
(best case) 

Comfort 
assessment 

Energy 
saving

s 
[1] Control of 

lighting and 
shading 
systems 
through 

simulation 

1 year User-system 
interaction 

KF Attendance, 
illuminance, tin, 

time, feedback on 
light and shading 

Number of 
interactions 
and energy 

savings 

- Interactions ↓ 
80.0–85.0%  

13.6–
35.0% 

[2] Control of the 
lighting 
system 

6 weeks User-system 
interaction 

Dynamic 
statistical 
analysis 

Attendance, 
illuminance, 

switch position, 
time 

Energy 
savings 

 - 23.2–
73.2% 

[3] Control of the 
lighting 
system 

12 weeks User-system 
interaction 

Dynamic 
statistical 
analysis 

Attendance, 
illuminance, 

switch position, 
time 

Number of 
interactions 
and users’ 
satisfaction 

- 18.1% of 
contested 
actions, in 
average + 

qualitative 
assessment 

- 



[4] Control of the 
lighting 
system 

10 days Vote  Q-Learning Illuminance, 
feedback on light 

Users’ 
satisfaction 
and energy 

savings 

- 92.0% of 
acceptability 

10% 

[5] Control of 
HVAC and 

lighting 
systems 

1 year Vote Clustering Tin, illuminance, 
attendance, 

feedback on light 
and temperature 

Users’ 
satisfaction 
and energy 

savings 
potential 

- 78.0% of 
satisfaction 

27–
39.0% 

[6] Control of 
lighting and 

shading 
systems 

1 year User-system 
interaction 

LogR Switch position, 
shading position, 

attendance, 
illuminance, 

irradiance 

Number of 
interactions 

- 6.0% - 8.0% of 
contested 

actions 

- 

[7] Control of the 
HVAC system 

3 weeks Vote LogR, KNN, 
RF, SVM 

Heart rate, Ts, tin, 
tout, RHin, 

RHout, CO2, 
openings status, 

illuminance, 
noise, feedback 

on set point 
temperature and 

preference 

Accuracy 80.0% - - 

[8] Control of the 
HVAC system 

1 year User-system 
interaction 

LogR tin, tout, RHin, 
RHout, 

attendance, 
thermostat 
interaction 

Number of 
interactions 

- Interactions ↓ 
~87.0%  

- 



 
2 Light utilisation ratio, unmet comfort ratio, lights to comfort ratio 

[9] Control of the 
HVAC system 

~ 3 
months 

(summer) 

Vote  ANN Tin, CO2, RHin, 
light, air pressure 
and feedback on 

temperature 

Energy 
savings and 

comfort 

- No change 20–
40.0% 

[10] Control of the 
HVAC system 

through 
simulation 

1 month 
(winter) 

Vote k-means Attendance, 
feedback on 
temperature 

Energy 
savings and 

comfort 

- 70.8–73.6% 8.4–
26.8% 

[11] Control of the 
HVAC system 

5 months User-system 
interaction 

GNB, DT, C-
SVC, MLP 

Time, tin, tout, 
attendance, 

setpoint 
temperature 

Accuracy 
and number 

of 
interactions  

97.3% Interactions ↓ 
aabout75%  

4.0– 
25.0% 

[12] Control of the 
lighting 
system 

2 months User-system 
interaction 

Q-Learning Illuminance, 
switch position, 
attendance, time 

LUR, UNC, 
LCR2, user 
satisfaction  

- Qualitative 
assessment 

- 

[13] Control of the 
HVAC system 

6 days Vote  LR Tin, tout, RHin, 
RHout, Ts, heart 
rate, feedback on 

thermal 
satisfaction 

Users’ 
satisfaction 
and energy 

savings 

- Rate: 5.56/7.0 13.8% 

[14] Control of the 
HVAC system 

through 
simulation 

3 weeks Vote  ANN Tin, RHin, pulse 
temperature, 
heart rate and 
feedback on 

thermal sensation 

R², users’ 
satisfaction 
and energy 

savings 

0.89 ↑ 85.0–100.0% of 
thermal 

sensation votes 
for comfort  

↓ 
therma
l load: 
90.0% 

heating  
30.0% 

cooling 



 
3 Mean absolute error 

[15] Control of the 
lighting 
system 

1 day Vote ANN Illuminance, 
attendance 

Accuracy 
and users’ 
satisfaction 

88.5% 86.4% 
satisfaction 

- 

[16] Control of the 
HVAC system 

through 
simulation 

1 year User-system 
interaction 

Q-Learning Attendance, tin, 
feedback on 

thermal sensation 

Number of 
interactions 

- “too hot” 
feedback ↓ 

40.0% 

- 

[17] Control of 
HVAC, 

lighting and 
shading 
systems 
through 

simulation 

3 years User-system 
interaction 

Dynamic 
statistical 

analysis, LogR 

Attendance, 
illuminance, tin 

Number of 
interactions 
and energy 

savings 

- Many scenarios 

[18] Control of the 
HVAC system 

through 
simulation 

10 days User-system 
interaction 

ANN Tin, RHin, set 
point temperature 

MAE3,  
RMSE 

0.5°C 
0.6°C 

- - 

[19] Control of the 
HVAC system 

9 days Vote LR Tin, tout, RHin, 
RHout, CO2, Ts, 

heart rate, set 
point 

temperature, 
feedback on 

thermal sensation, 
satisfaction and 

RH 

Users’ 
satisfaction 
and energy 

saving 

- Rates: 5.2/7.0 
and 5.3/7.0 

10.0– 
20.0% 



 
4 Mean square error 

[20] Control of the 
HVAC system 

4 months User-system 
interaction 

MLP Tin, tout, RHin,, 
RHout, set point 

temperature 

MSE4 0.28 -  

[21] Control of the 
HVAC system 

2 weeks Vote  Branching 
dueling 

Q-network 

Tin, tout, RHout, 
solar radiation, 

attendance, time, 
HVAC energy 
consumption, 
feedback on 

comfort 

Users’ 
satisfaction 
and energy 

savings 

- Acceptability ↑ 
11.0%  

13.9% 

[22] Control of the 
HVAC system 

16 days Vote RF, SVM, DT, 
gradient 
boosting, 

ANN 

Time, tin, RHin, 
heart rate, 

feedback on 
thermal sensation 

vote 

Accuracy, 
users’ 

satisfaction 
and energy 

savings 

88.2% Discomfort ↓ 
33.0% 

27.0% 

[23] Control of the 
HVAC system 

21 days Vote  Reinforcement 
learning-based 

Tin, RHin, heart 
rate, Ts, feedback 

on thermal 
sensation 

Users’ 
satisfaction 
and energy 

savings 

Optimisatio
n 

Discomfort ↓ 
10.9%  

No 
change 

[24] Control of the 
HVAC system 

8 days Vote Multinomial 
LogR  

Tin, tout, RHin,, 
irradiance, 

feedback on 
thermal 

preference 

Users’ 
satisfaction 
and energy 

savings 

- No change 28.0–- 
35.0% 
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