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Abstract: Dissolved gases in the aquatic environment are critical to understanding the population
of aquatic organisms and the ocean. Currently, laser absorption techniques based on membrane
separation technology have made great strides in dissolved gas detection. However, the prolonged
water–gas separation time of permeable membranes remains a key obstacle to the efficiency of dis-
solved gas analysis. To mitigate these limitations, we demonstrated direct measurement of dissolved
gas using the evanescent-wave absorption spectroscopy of a tapered silica micro-fiber. It enhanced
the analysis efficiency of dissolved gases without water–gas separation or sample preparation. The
feasibility of this sensor for direct measurement of dissolved gases was verified by taking the de-
tection of dissolved ammonia as an example. With a sensing length of 5 mm and a consumption
of ~50 µL, this sensor achieves a system response time of ~11 min and a minimum detection limit
(MDL) of 0.015%. Possible strategies are discussed for further performance improvement in in-situ
applications requiring fast and highly sensitive dissolved gas sensing.

Keywords: tapered single-mode silica fiber; evanescent wave; dissolved gas; in-situ detection; direct
absorption spectroscopy

1. Introduction

Variations in dissolved gases in aquatic environments, such as oceans and lakes, have
a significant impact on the organisms in the corresponding ecosystems [1]. For example,
dissolved oxygen is essential for marine aerobes, and the scientific community predicted
decreased dissolved oxygen in oceans in the next century [2,3]. Too much dissolved CO2
in the ocean could cause increased acidity, the destruction of coral reefs, or the significant
expansion of anoxic dead zones [4]. Excessive dissolved ammonia would lead to the rapid
growth of algae and the eutrophication phenomenon, and then the reduction of dissolved
oxygen would deteriorate the fragile aquatic ecosystem [5]. Therefore, large-scale direct
in-situ sensing is needed to qualitatively detect dissolved gas concentrations in aquatic
environments and expand the spatial-resolution data set.

Recently, in situ detections have employed different technologies, such as membrane
separation [6,7], semiconductor sensing [8,9], mass spectrometry [10,11], and infrared ab-
sorption spectroscopy [12–15], to determine the dissolved gas concentration in aquatic
environments. Infrared absorption spectroscopy technology stands out over others due
to its high sensitivity and specific absorption selectivity for different molecules of interest.
Current absorption-spectroscopy-based methods that are suitable for in-situ dissolved
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gas measurement can be roughly divided into (1) direct absorption—tunable diode laser
absorption spectroscopy [16–19] and cavity enhanced spectroscopy [20–23], and (2) indirect
absorption—photoacoustic spectroscopy [15,24]. Usually, the realization of these technolo-
gies requires the special design of a water–gas separation device to extract dissolved gas
in its gaseous phase. Hydrophobic and permeable membranes are commonly used in dis-
solved gas extraction. However, a limited gas separation efficiency of tens of microliters per
minute often restricts the response time of the entire sensor [25]. Many efforts were carried
out to shorten the response time by minimizing the size of the gas chamber [24] or using
exponential fitting [26]. Even so, the response time of hours still hampers the measurement
efficiency. Therefore, for further efficient investigation on a larger scale, it is crucial to
achieve in situ dissolved gas measurement with fast response and easy implementation
while inheriting the advantages of classic absorption spectroscopy methods.

As an exquisite platform for enhanced light–matter interaction, micro-nano fiber has
aroused widespread interest in spectroscopic analysis, owing to its remarkable corrosion
resistance, intricate microstructure, effortless installation, immunity to electromagnetic
interference, minimal attenuation over long distances, and commendable biochemical
compatibility. Paul and Kychakoff, as early as 1987, presented a comprehensive theoretical
model, establishing the fundamental framework for the advancement of fiber evanescent-
wave sensors [27]. In the same year, Hideo Tai demonstrated the application of tapered
fiber in methane sensing by thermally and mechanically stretching a multimode fiber with
a diameter of 125 µm, achieving a sensitivity of 1% [28]. In 1999, Mizaikoff pioneered
the development of a mid-infrared fiber evanescent-wave spectrometer that utilizes the
selective absorption of fiber evanescent waves. This instrument was primarily employed
for quantifying hydrocarbons in aqueous environments and enabling underwater operation
down to a depth of 300 m [29]. In 2004, Yoesf Raichlin et al. utilized a broadband light
source combined with silver halide mid-infrared fiber to measure triphosphorous and
dichlorvos in water, achieving a measurement accuracy of 1 ppm [30]. In 2012, Luzinova
et al. used mid-infrared (MIR) evanescent field absorption spectroscopy to quantitatively
analyze trace oils in water to achieve detection limits at ppm concentration levels. After
that, the surface of the fiber was modified by grafted epoxidized polybutadiene layers to
directly detect crude oil in a deionized water matrix with a ppb concentration level [31]. In
2013, Lu et al. utilized a polycrystalline silver halide sensor fiber that was modified with
an ethylene/propylene copolymer membrane to achieve the detection of hydrocarbons in
water. High detection sensitivity was obtained for CHC mixtures over a wide concentration
range from 5 to 700 ppb [32]. In 2018, Yang et al. utilized Ge20Se60Te20 glass-tapered fibers
for in situ detection of mixtures of methanol and dichloromethane through optical fiber
evanescent-wave spectroscopy. The increase in sensitivity was verified by increasing the
evanescent-wave signal in tapering fiber [33]. In 2021, Qi et al. presented a gas–liquid
sensor based on chalcogenide-etched-tapered fiber functionalized with graphene oxide film.
The sensors could detect VOCs such as formaldehyde and butane in the mid-infrared band,
and the detection sensitivity of both solution and gas was 4.5091 a.u./mg·mL−1 and 0.4812
a.u./vol.%, respectively [34]. In recent years, the advancement of optical fiber evanescent-
wave sensing technology led to the emergence of various novel sensing structures with
exceptional performance, which found extensive applications in environmental sewage
monitoring, atmospheric monitoring, and the analysis of volatile organic compounds in
seawater [35–38].

For most in situ dissolved gas sensing technologies of evanescent wave, the optical
waveguide usually consists of a sensitive film with selective permeability. When the
light wave propagates in the waveguide material under full reflection conditions, an
evanescent-wave field is formed in the film and interacts with the gas dissolved within
it. Although this reduces the response time of the system to some extent by directly
measuring the sensitive film without completely separating water and gas, the material
characteristics and permeability of the film seriously restrict both the response time and
sensitivity of the sensing system [39]. Moreover, some interesting research focused on the
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mid-infrared spectral range to further explore the much higher absorption ability, utilizing
mid-infrared devices as laser sources and sensing fibers. This strategy not only escalates
the expenses associated with experimentation but also hampers the experimental process
due to the inherent drawbacks of mid-infrared fiber, such as its relatively inferior rigidity
and susceptibility to fracture.

In this study, we develop a straightforward and efficient dissolved gas sensing system
in the near-infrared wavelength range utilizing a single-mode fiber evanescent wave com-
bined with microfluidic technology. The direct absorption spectroscopy (DAS) method for
analyte detection enables accurate monitoring of dissolved gas in water without the need
for sensitization treatment. The feasibility of our approach is demonstrated by detecting
aqueous ammonia samples, and the concentration of aqueous ammonia is determined
through integrated absorbance. The experimental results show a response time of approxi-
mately 11 min, offering a simple and effective solution to enhance the response speed of in
situ detection systems for dissolved gas in water.

2. Methods
2.1. Evanescent-Wave Dissolved Gas Sensing

When light propagates in the optical fiber by total reflection, partial energy flow, in the
form of an evanescent wave, exists in the cladding. If the fiber cladding comprises a lossy
medium, then the evanescent-wave energy flow could be partially absorbed, imprinting
such information on the transmitted light waves. Replacing the cladding with analytes
of interest enables convenient evanescent-wave sensing at the fiber end after collecting
the transmitted photons. Its effective proportion of the total light power can be adjusted
by controlling the fiber shape and size of the sensing area [40]. Spectral information is
also accessible by the employment of a wavelength-tunable laser [41] or by the synergy
of a broadband light source and a spectrometer [42]. A fused taper can be fabricated by a
hydrogen–oxygen flame with the schematic shown in Figure 1. After proper fabrication,
it can be divided into three distinct sections: the untapered segment (single-mode fiber),
the tapered transition region (transition zone), and the beam waist (taper waist). With this
structure, the fundamental mode of the untapered section is able to traverse the transition
region and transform into the cladding mode at the beam waist.
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Figure 1. Schematic of the fused taper fabricated by oxyhydrogen flame for evanescent-wave generation.

When light at wavelength λ enters the fiber, the evanescent wave interacts with the
analyte along the optical fiber surface. The interaction still obeys the classical Beer–Lambert
law that relates the lights before and after light–matter interaction [43]. The evanescent-
wave absorption coefficient (γ) can be equivalent as follows [27]:

γ = (1 − η)αfiber + ηαanalyte (1)

where η represents the percentage of total power carried by the evanescent wave outside the
optical fiber, αfiber is the fiber’s absorption coefficient, and αanalyte is the analyte’s absorption
coefficient. Due to the fact that, apart from the sensing area, the optical fiber cladding is
replaced by the analyte, the material of the optical fiber remains an ideal homogeneous
medium with almost no absorption loss, i.e., αfiber ≈ 0. Although only the evanescent
wave interacts with the analyte, the loss caused by analyte absorption is manifested in
the overall light intensity, mainly due to the parasitic relationship between the evanescent
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wave and the light trapped in the fiber. Therefore, the power transmitted by an optical fiber
whose cladding has been replaced locally by an absorbing medium may be written in the
following form [44]:

P1 = P0 exp(−γL) = P0 exp
(
−ηαanalyteL

)
(2)

where P0 is the output power of the light source without analyte absorption, P1 is the
output power collected from the outgoing fiber end after absorption of the analyte, and L is
the effective fiber length of the evanescent-wave absorption unit.

For liquid analytes, the refractive index n2 of the analyte to be measured is often
much smaller than the core refractive index n1, and ∆ = (n1 − n2)/n1≪1 will no longer be
maintained. Hence, the optical fiber transitions from weak-guided mode in the transmission
segment to strong-guided mode in the evanescent-wave absorption unit. The expression of
the evanescent-wave absorption coefficient γ will be modified to the following [45]:

γ =
λn2 cos2 θ

2ρπ
(
n2

1 − n2
2
)

sin θ

√
sin2 θ − (n2/n1)

2
·α (3)

where ρ is the core radius, θ is the incident angle, α = ε·C is the absorption coefficient of the
liquid analytes, ε is the molar absorptivity of the analyte, and C is the concentration of the
analyte to be measured. By substituting Equation (3) into Equation (2), we obtain the light
energy transmission after the evanescent-wave absorption unit as follows:

P1 = P0 exp

− ελn2 cos2 θ

2ρπ
(
n2

1 − n2
2
)

sin θ

√
sin2 θ − (n2/n1)

2
CL

 (4)

According to Equation (4), with the incident angle, taper waist length, taper waist
radius, incident wavelength, core refractive index, analyte refractive index, and its molar
absorptivity held constant, the power of the optical fiber output end only depends on the
concentration of the target liquid. Consequently, changes in the concentration level of
the target liquid can be detected by monitoring variations in either the optical power or
spectrum at the output end of the optical fiber.

The absorbance that determines the concentration of the analyte can be given by
the following:

A = − log10

(
P1(λ)

P0(λ)

)
(5)

In the spectrum of the evanescent-wave field, in addition to absorption, light waves
also undergo attenuated total internal reflection and frustrated total reflection near the
critical angle. This makes it challenging to determine concentration solely by analyzing
line shape and width. Thus, for direct absorption spectroscopy, the concentration can also
be determined by integral absorbance [46], mitigating potential noise from intensity jitter
or optical interference. The integral absorbance for evanescent-wave absorption, Aintegral,
can be defined as follows:

Aintegral =
∫

− log10

(
P1(λ)

P0(λ)

)
dλ (6)

2.2. Micro-Fiber and Micro-Channel Preparation

A piece of fused tapered fiber was used as the micro-fiber, and its preparation was
performed by the hydrogen–oxygen flame brush method, which has the advantages of easy
preparation, a smooth surface, morphology control, and high transmittance. As shown
in Figure 2a, we utilized the wave optics module in COMSOL Multiphysics to simulate
the variation trend of evanescent-wave intensity with diameter in air, pure water, and
aqueous ammonia (25% in concentration), respectively, at 1550 nm. The intensity of the
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evanescent wave increases as the waist diameter decreases or as the external refractive
index approaches that of the fiber. Additionally, we assessed the correlation between
power transmittance and taper length while maintaining a constant taper waist of 2 µm
(Figure 2b). The power transmittance increases with an elongation of the transition zone
length. For short transition zones with a sharper slope, it is easier for the fundamental
mode to couple into higher-order modes. Conversely, only a single mode or a limited
number of low-order modes are permissible in the waist region, leading to additional
power dissipation. Therefore, achieving a longer transition region by gradually reducing
its diameter ensures higher transmittance, and theoretically, a transition zone length of
10 mm guarantees a power transmittance exceeding 98%.
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Figure 2. (a) Evanescent-wave power ratio at the taper waist calculated in air, pure water, and
aqueous ammonia (25% in concentration) as a function of diameter. (b) The relationship between
power transmittance and transition zone length.

Therefore, as a tradeoff between mechanical stability and proportion of evanescent
wave, we conducted parameter optimization on the optical fiber diameter, sensing length,
and transition zone interaction (waist diameter: 2.0 µm; waist length: approximately
5 mm; transition zone length: 12.5 mm) [47] for the fabrication of a tapered micro-fiber.
Figure 3a shows the monitored real-time power transmittance of the tapered fiber dur-
ing the fiber drawing process, which reaches a final plateau level of 98.6% (~0.06 dB).
Meanwhile, the surface morphology of the micro-fiber was examined using a scanning
electron microscope (SEM), as depicted in Figure 3b, showing a diameter of ~2.145 µm.
The refractive index of aqueous ammonia in the near infrared region is slightly higher
than that of water and changes little with an increase in ammonia concentration. The
calculated evanescent waves generated by the micro-fibers with this diameter are 14.6%
and 15.5%, respectively, yielding a small difference of ~0.9%. This difference would be
further reduced with the normalization process. Therefore, the influence of the difference
in evanescent-wave intensity between aqueous ammonia and pure water on the overall
experimental results is disregarded for the sake of convenience in calculation, given the
little change in refractive index.

In this study, the organic polymer material polydimethylsiloxane (PDMS) from DOWSIL
(DC184) was utilized to fabricate microfluidic channels and integrate with micro-fibers. The
specific fabrication process is illustrated in Figure 4a. We initially fabricated a microchannel
model (80 × 40 × 10 mm3) using additive manufacturing technology with transparent
photosensitive resin. Considering the limitations of additive manufacturing in achieving
minimum bulge size and the simplicity required for micro-fiber packaging, we set the bump
width and height of the model to be 0.8 mm and 1.5 mm, respectively, resulting in a liquid
volume of only ~50 µL for reducing sample consumption. Subsequently, polydimethyl-
siloxane material was injected into the model and heated up to 80 ◦C for two hours in
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an oven. After the curing process, the PDMS material was extracted from the mold and
positioned onto a three-dimensional displacement assembly platform. Subsequently, we
precisely arranged the micro-fiber within the microchannels, which were then hermetically
sealed using a gas-tight PDMS film, as shown in Figure 4b.
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3. Experimental Setup

Figure 5 depicts a schematic diagram of an experimental setup used to directly detect
aqueous ammonia with a silica micro-optical fiber. The micro-fiber was fabricated by using
hydrogen flame to stretch silica single-mode fiber (SMF-28E+, Corning, Corning, NY, USA)
with controllable waist diameter and length [47]. The micro-fiber was encapsulated inside
the PDMS microchannel, which can be filled with a liquid sample of aqueous ammonia
with a controllable concentration as needed for sensing calibration. An external-cavity
diode laser (TSL-550, Santec, Komaki, Japan) is connected to one end of the micro-fiber
through a splitter (90:10) that separates a small portion of light into a wavemeter (671B,
Bristol, UK) for monitoring purposes. The laser wavelength, from 1480 nm to 1630 nm,
scans the sample in the form of a sawtooth wave. Finally, a photodetector (DET08CFC/M,
ThorLabs, Newton, NJ, USA) detects the transmitted light intensity, which is digitized to a
high-speed data acquisition card (PCI-6356, National Instruments, Austin, TX, USA) for
collection and processing. Inspired by commonly used medical transfusions, a liquid buffer
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(550 µL) is used to prevent bubbles from entering and leaving the microchannel during the
sample-changing process. A ~3-kilometer-long fiber spool serves primarily as a filtering
mechanism to eliminate residual high-order modes that may persist after transmission
through the micro-optical fiber, thereby mitigating potential interference fringes.
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4. Experimental Results and Discussion
4.1. Absorption Spectroscopy of Aqueous Ammonia

The spectral information of the analyte of interest is one of the important parameters
to guarantee measurement accuracy. However, unlike most gaseous molecules with a
publicly accessible spectral database [48], as far as we know, the spectral parameters of
aqueous ammonia are rarely reported in the near infrared range. Herein, capturing precise
absorption information for aqueous ammonia is imperative, particularly its absorption
peak position and broad spectral profile. A commercial FT-IR spectrometer (VERTEX 80v,
Bruker, Billerica, MA, USA) was employed for laboratory calibration due to its exceptional
advantages, including superior resolution, heightened sensitivity, excellent signal-to-noise
ratio, remarkable repeatability, and extensive measurement range. During the measurement
process, a custom glass cuvette was used as a liquid cell with an optical path of 1 mm. Pure
water served as the initial background reference for further analysis, while 25% aqueous
ammonia was utilized as a signal. The absorption spectrum was then calculated based on
Equation (5), shown in Figure 6, within the near-infrared spectral range from 1.0 µm to
2.5 µm. The concentration is certified by the sample supplier according to ISO Guide 35.
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The absorption spectrum of ammonia in a liquid environment exhibits a broad spec-
trum, featuring positive absorption peaks at approximately 1525 nm, 2012 nm, and 2212 nm,
as well as negative absorption peaks near 1433 nm, 1892 nm, and 2430 nm. The absorbance
signal in Figure 6 is primarily a result of the combined absorption of the solvent (water
molecules) and the solute (ammonia molecules). When the background absorption intensity
exceeds that of aqueous ammonia, Equation (5) will yield a negative value, which is a
normal occurrence and does not impact the analysis of experimental results. In order to en-
sure the accuracy of detection information, it is advisable to carefully select spectral bands
characterized by strong absorption and optimize laser coverage at the forefront. Thus, we
opt for utilizing an external cavity diode laser (TSL-550, Santec, Komaki, Japan) as the
light source for our fiber evanescent-wave absorption sensing system due to its exceptional
wavelength tuning range that precisely covers the aqueous ammonia absorption peak
around 1525 nm. During the experiment, the laser, propagating through the micro-fiber,
systematically scanned from 1480 nm to 1630 nm using a sawtooth wave pattern at a
rate of 30 nm/s. The injection pump introduced aqueous ammonia samples of different
concentrations (ranging from 0.1% to 25%) into the sensor at a stable low flow rate of 0.05
mL/min. Prior to each sample change, a thorough cleaning of the channel with ultrapure
water was conducted, and measurements were taken for output power under flowing
water conditions for subsequent data analysis. Finally, signal processing and analysis were
performed by combining Equation (5). The measurement results of varying-concentration
aqueous ammonia are shown in Figure 7.
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Figure 7. Absorption spectra of aqueous ammonia with varying concentrations using (a) the FT-IR
spectrometer and (b) the silica micro-fiber evanescent-wave direct absorption sensor within the ECDL
working range of 1480–1630 nm.

The two detection methods have good consistency in the spectra. It is of interest to
observe a red shift phenomenon in both measurement methods, where the absorption peak
position of aqueous ammonia tends to shift towards longer wavelengths with increasing
concentration. This phenomenon may be attributed to the fact that the peak of the absorp-
tion signal primarily consists of the absorption contributions from water and ammonia
molecules, representing the maximum point of their combined absorptions. As the concen-
tration of ammonia molecules increases, it inversely correlates with the concentration of
water molecules, resulting in corresponding increments and decrements in their respective
absorption coefficients. Consequently, this inevitably leads to a shift in the absorption
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peak. Figure 8 shows the correlation between the peak wavelength and concentrations
of aqueous ammonia for both methods. Linear regression analysis yields coefficients of
determination (i.e., R-square values) of 0.9962 and 0.9927, respectively, indicating a strong
linear correlation between the peak wavelength of the sensor and the concentration of
the solution.

Figure 8. The relationship between the peak position and aqueous ammonia concentration in (a) the
FT-IR spectrum and (b) the silica micro-fiber evanescent-wave direct absorption spectrum.

4.2. Performance Evaluation

Equation (6) in the second section infers a linear relationship between the integral
absorbance signal of the evanescent-wave direct absorption spectrum and the liquid con-
centration. Therefore, by detecting samples with different standard concentrations and
establishing a linear equation for sensor calibration, the inversion of the measured liquid
concentration can be realized. The corresponding relationship between the amplitude of
the integral absorbance signal and the aqueous ammonia concentration is experimentally
obtained with the results shown in Figure 9, and the vertical error bars (1-σ standard
deviation) are obtained by evaluating the variation of the measurement results of 25 sets
of experimental data, indicating good linearity with an R-square value of 0.9985 and a
responsivity of ~3.391 cm−1/%.

Figure 9. The measured integral absorbance as a function of aqueous ammonia concentration and
error bars are magnified five times. The linearity calibration was performed by introducing samples
of varying concentrations into the microchannel at a constant flow rate of 0.05 mL/min.

To evaluate the minimum detection limit (MDL) of this developed dissolved gas sensor,
we record a continuous measurement of pure water background for about 15 min with a
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temporal resolution of 10 s. Figure 10a presents the recorded results, yielding a standard
deviation of 0.050 cm−1. A corresponding MDL of 0.015% is determined using the analysis
results in Figure 9. To access the precision of this dissolved gas sensor, a histogram plot
of the measured data is shown in Figure 10b, which characterizes the noise distribution
around the mean value of 0. A Gaussian fitting was performed, indicating a half width at
half maximum (HWHM) of 0.063 cm−1. The precision is determined to be 0.018% with
the HWHM.
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Figure 10. (a) The amplitude of the continuous measured integral absorbance, and (b) the Gaussian
distribution of the 80 data points.

For optical fiber sensors, the response time is usually defined as the time that is
required by the sensor to reach 90% of the maximum signal [49]. By changing the sample
concentration from 0 (pure water) to 1%, we obtained the real-time integral absorbance of
the sensor, as shown in Figure 11. The response time of the sensor is calculated to be about
11 min, i.e., t90 ≈ 11 min, proving itself as a more efficient measurement method compared
to that of membrane separation technologies [21,24,50].
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Figure 11. The response time (t90) of the system was measured at a flow rate of 0.05 mL/min, with
the aqueous ammonia concentration changing from zero to 1%.

4.3. Discussion

By detecting the evanescent-wave absorption spectrum of aqueous ammonia using a
simple micro-fiber (diameter, 2 µm; taper waist length, 5 mm) without any sensibilization
treatment, we have proven the possibility of direct measurement of dissolved ammonia
gas in water without separating the gaseous ammonia from the sample solution. After a
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preliminary test, the current sensor achieved a detection responsivity of 3.391 cm−1/%, a
response time of about 11 min, and a minimum detection limit of 0.015%. It is of interest to
discuss further performance improvement for wider aquatic applications.

In terms of the sensing unit, plating an analyte-sensitive layer on the fiber surface
enables contact area enhancement with photons [51]. This modification would increase
the absorption intensity of the analyte, indirectly improving both the MDL and absorption
selectivity while preventing interference from other species. Moreover, incorporating Fiber
Bragg Grating (FBG) at both ends of the sensing fiber to create a fiber Fabry–Pérot cavity
is another effective alternative strategy. This approach would effectively extend the light–
matter interaction path and further enhance the MDL. However, it is crucial to ensure
good optical coupling efficiency for this method without sacrificing other performances.
Additionally, decreasing the tapered waist diameter [40,52], choosing a stronger absorption
peak, e.g., the absorption peak at 2200 nm in Figure 6, and combining optical fiber ring
decay technology [53] are also possible strategies for sensitivity enhancement.

The response time of our sensor has been improved to a minute level, much faster
compared to the traditional membrane separation technology. Sub-minute or even second-
level response is still necessary in some scenarios where measuring the dynamic variation
and distribution of dissolved gas is needed. Considering the negligible volume of the
microchannel and the inlet tube (35 µL), the main factors limiting the response time are the
injection rate and the volume of the buffer (Ttime = Vvolume/Srate). An increased injection
rate (Srate) would effectively promote the response time in a simple way. However, one must
consider the possible micro-fiber deformation due to its extremely small waist diameter
and excessive flow rate, which need a much more detailed test before real applications.
The liquid content of the buffer (550 µL) also restricts the response time; when measuring
samples of different concentrations, the sample of the former concentration needs to be
replaced by the sample of the latter concentration through the buffer device, and response
detection is carried out in the sensing area. The large buffer volume (550 µL) and slow
injection rate (0.05 mL/min) contribute to the overall response time. Without the buffer, the
ideal response time can even be several seconds, but at the cost of potential interference from
external air bubbles. Therefore, carefully adjusting the flow rate and reducing the volume
of the buffer are possible strategies in future investigations to improve the response time.

In the analysis of multi-component mixtures, absorption spectroscopy must account
for the interference caused by overlapping absorption bands. To address this issue in our
subsequent research, we will not only focus on modifying optical fiber but also incorpo-
rate frequency-resolved spectroscopic technologies in the micro-fiber platform [54] and
decoupling techniques for further exploration. The powerful computing power of ma-
chine learning effectively distinguishes signals from noise and shows potential for solving
absorption overlap problems [55,56].

5. Conclusions

In summary, we used a hydrogen flame to stretch silica single-mode fiber to obtain
tapered fiber with a controllable waist diameter and length and successfully verified
the feasibility of the evanescent-wave direct absorption spectrum of fiber without any
modification in the liquid phase. Taking the dissolved ammonia nitrogen in water as the
detection target, both the absorption lines and obvious red shifts are consistent with the
results of a precision FT-IR spectrometer. Under normal temperature and pressure, the
integral absorbance signal amplitude of the sensor has a good linear relationship with the
standard aqueous ammonia concentration, the square of the correlation coefficient is 0.9985,
and a responsivity of ~3.391 cm−1/%. In the presence of a liquid buffer, the response
time is ~11 min, and the MDL is accessed at 0.015%. Several strategies are discussed to
further enhance the performance of the current sensor system. Despite the present system’s
relatively modest detection performance, we believe the technique of this study serves as a
valuable candidate for future marine dissolved gas detection.
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