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Abstract: Recently, explainability in machine and deep learning has become an important area in the
field of research as well as interest, both due to the increasing use of artificial intelligence (AI) methods
and understanding of the decisions made by models. The explainability of artificial intelligence
(XAI) is due to the increasing consciousness in, among other things, data mining, error elimination,
and learning performance by various AI algorithms. Moreover, XAI will allow the decisions made
by models in problems to be more transparent as well as effective. In this study, models from the
‘glass box’ group of Decision Tree, among others, and the ‘black box’ group of Random Forest,
among others, were proposed to understand the identification of selected types of currant powders.
The learning process of these models was carried out to determine accuracy indicators such as
accuracy, precision, recall, and F1-score. It was visualized using Local Interpretable Model Agnostic
Explanations (LIMEs) to predict the effectiveness of identifying specific types of blackcurrant powders
based on texture descriptors such as entropy, contrast, correlation, dissimilarity, and homogeneity.
Bagging (Bagging_100), Decision Tree (DT0), and Random Forest (RF7_gini) proved to be the most
effective models in the framework of currant powder interpretability. The measures of classifier
performance in terms of accuracy, precision, recall, and F1-score for Bagging_100, respectively,
reached values of approximately 0.979. In comparison, DT0 reached values of 0.968, 0.972, 0.968,
and 0.969, and RF7_gini reached values of 0.963, 0.964, 0.963, and 0.963. These models achieved
classifier performance measures of greater than 96%. In the future, XAI using agnostic models can be
an additional important tool to help analyze data, including food products, even online.

Keywords: explainable artificial intelligence (XAI); Local Interpretable Model Agnostic Explanations
(LIMEs); machine learning; classifiers ensembles; gray-level co-occurrence matrix (GLCM); Random
Forest (RF); blackcurrant powders

1. Introduction

Machine learning (ML) and deep learning (DL) have received interest in the scientific
community as well as industry [1–7]. Many applications of artificial intelligence methods
can be found in many research areas, notably in engineering by monitoring the condition
of structures in construction [8–10]; in robotics through autonomous robots equipped
with artificial intelligence and vision systems, enabling objective assessment, reduced
report generation time, and improved maintenance planning [11–13]; in medicine by
performing diagnostic imaging, remote surgeries, surgical subtasks, and whole surgical
procedures [14–18]; in finance for risk analysis, prediction, and maintenance planning of
financial infrastructure [19–21]; and also in the agri-food industry [22–24]. Concentrating on
the food sector, the important steps are production processes, quality control, optimization,
and even the forecasting of profits and losses resulting from management when obtaining
the final product. Artificial intelligence seems to be an alternative solution to support
production improvement efforts through automation as well as process optimization.
However, consumer awareness is also influencing the food industry to control processes
effectively and obtain quality food products. The consumer expects a food product to be at
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the highest level of quality while containing many bioactive compounds to assist with diet
and well-being or even to have a potential impact on their overall health. With this in mind,
manufacturers and researchers are striving to produce new formulations that, among other
things, improve the consumer’s health.

This research study focused on the analysis of fruit powders. Fruit powders find
interest especially in those consumers who care about food products with a natural source
of nutrients, among other things, without added sugar or preservatives. Fruit powders can
be used as a natural addition to dishes, among other things, enriching the nutritional value
of the food consumed by the consumer [25–27]. They are characterized by a long shelf life
and high sustainability, which means a long storage time [28]. This way of preparing food
products that can be stored and still contain many bioactive compounds significantly affects
the economics of this product. Considering the losses resulting from the production of food
and its subsequent waste by the consumer, this solution is emerging as an alternative to the
traditional obtaining of food products.

However, in order to effectively optimize or control food products, modern techniques
are sought. When finding these methods, which have been applied to this research problem,
among others, one expects at the same time to understand them, i.e., the explainability of
artificial intelligence (XAI). XAI in machine learning is also an important aspect related to
data mining [29,30]. Data mining is a key step in designing and obtaining effective machine
learning models. In order to learn about an issue, you need data. These data have a certain
structure. In turn, having the structure of the data, machine learning algorithms make
decisions on the basis of ‘glass box’ and ‘black box’ [31–33]. XAI allows us to understand
the idea of making these decisions so that through the prediction of a given model, we
can evaluate the choice of data [34–36]. In the future, XAI can affect the reliability of
model selection for data, as well as effective decisions for a given research question. The
applications of ML and DL, among others, in evaluating the quality of food products [37,38],
optimization of production processes [39], and forecasting [40] to manage inventory and
food supply chain indirectly through XAI will make the direction in the implementation of
these models more effective.

In this research work, the aim was to explain currant powder image texture features
using a Gray-Level Co-occurrence Matrix (GLCM) assisted by machine learning methods.
An attempt was made to understand how image texture features such as entropy, contrast,
correlation, dissimilarity, and homogeneity affect the classification of different types of
currant powders. This will make it possible to determine exactly which texture descrip-
tors describe the morphological structure of the selected type of currant powders. For
comparison, it will also help clarify which proposed model handled the classification of
blackcurrant powders more effectively.

2. Materials and Methods
2.1. Image Collection and Preprocessing

The object of this research was a collection of microscopic images describing 6 types of
blackcurrant powders. The information encoded in the microscope images represented the
morphological structure of the selected types of blackcurrant powders. Each type of powder
specifies a blackcurrant fruit solution with 30% carrier (Figure 1a–e): milk whey protein
(w), maltodextrin (md), inulin (in), gum arabic (ga), microcrystalline cellulose (c), and
fiber (f). More details on how the currant powders were obtained are described in Przybył
et al. 2023 [38] and 2024 [41]. The digital images were taken using Scanning Electron
Microscopy (SEM), which was made available in the research data repository. Performing
microscopic imaging using SEM required the preparation of samples, i.e., blackcurrant
powders, respectively. Each sample was attached to a sample slice with double-sided
adhesive tape and cathodically sputtered with gold. Before the test, the microscope was
calibrated with a secondary electron detector. The detector’s working distance from the
samples inside the specimen was 10 mm (WD = 10 mm). The accelerating voltage for each
sample was 12.82 kV. For each variant of black currant powders, 35 replicates were taken
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as microscopic images. The original digital images were obtained at 500 magnification at a
scale of 100 µm (210 images).
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Figure 1. Example of microscopic images comparing different types of currant powders with 30%
carrier: (a)—milk whey protein (w), (b)—fiber (f), (c)—gum arabic (ga), (d)—microcrystalline cellulose
(c), (e)—maltodextrin (md), and (f)—inulin (in).

In the next step, a point transformation was performed for the original digital images
by 90, 180, and 270 degrees, obtaining a learning set of 630 digital images. Next, image
segmentation was performed by cropping each image from 2048 × 1576 resolution (primary
images) to 1400 × 1400 resolution (secondary images). The image segmentation technique
did not affect the distortion of the image because by reducing the size, cropping of this
image was performed. As a result, the aspect ratio of the image was preserved. A script
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in Python ver. 3.10 supported by the Python Imaging Library ver. 9.4 (PIL) for the image-
segmentation process of currant powders is described in Przybył et al. 2024 [41].

2.2. Feature Extraction Using Gray-Level Co-Occurrence Matrix

This step required transforming the secondary images to acquire a numerical dataset.
In a previous study [41], microscopic images of blackcurrant powders were used in deter-
mining the performance of the results of different machine learning models. The models
were evaluated for classifier performance due to each image texture descriptor of currant
powders with 6 different data sets [41]. In this research, the process of transforming micro-
scopic images into numerical data was carried out, integrating all textural features of the
images into a single data set. In the previous study, it was observed that fruit powders are
effectively recognized using image texture descriptor, i.e., entropy [41]. In other cases, the
current application intended to automate the machine learning process to a certain extent
to obtain significantly higher machine learning results [41].

Within the XAI framework, the focus was on image texture descriptors extracted using
the Gray-Level Co-occurrence Matrix (GLCM) (Figure 2) [42–44]. The recognition of these
currant powders with different types of carriers using all image texture descriptors such
as entropy, contrast, correlation, dissimilarity, and homogeneity will explain the impact
of these features on the performance of decision made by machine learning models. This
concept determined which model did the best job of explaining texture features from an
image relative to the type of blackcurrant powder.
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Figure 2. XAI of blackcurrant powders by GLCM.

This time, the procedure for extracting image texture features for the selected type
of currant powders was determined using the direction as well as the distance of pixels
in the image. The pixel distance of the image informs about the distribution of distances
between pixels. In the case of direction, it is the orientation of the pattern (morphological
structure of currant powder microparticles) in the image. When extracting image texture
features, 12 combinations were adopted, which included a distance of 1, 2, and 3 pixels with
respect to consecutive pixels, and considered the direction of image patterns of 0, 90, 180,
and 270 degrees with respect to these pixels (Figure 3). This comparison analysis between
pixels was performed to more broadly understand the model’s decision relative to features
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when recognizing fruit powders. The extraction of texture features was performed using a
developed script in Python ver. 3.9. In the first step, the libraries pandas, numpy, skimage,
and os were imported [45]. In the next step, a directory was defined, which contained
images of different types of currant powders (630 images in total). Using the greycomatrix
and greycoprops methods from the skimage library, a list of image descriptors (glcm_props)
was prepared, i.e., entropy, contrast, correlation, dissimilarity, and homogeneity. In the
next step, an empty list was initialized to the target extracted results (results), i.e., image
texture features using the pandas library [45,46]. The next steps were based on batch image
processing, i.e., loading a file with the specified extension ‘.jpg’, creating a copy of the image,
converting the image to numerical data using the img_as_ubyte function, and determining
GLCM parameters while considering the fixed direction and distance between image pixels.
The last step returned a list of results from batch processing of currant powder images to a
file with the extension ‘.csv’. The complete procedure for obtaining GLCM descriptors from
an image using Python is shown below in pseudocode. A set of image texture features for
the selected type of currant powders was obtained. The set contained 60 variables, which
specified for each of the 5 texture descriptors (GLCM) 12 combinations due to the direction
and distance of the image pixel, respectively. A total of 60 variables corresponding to each
type of blackcurrant powder were obtained.
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Figure 3. The explainability of the morphological structure of black currant powder using AI
algorithms.

Pseudocode for processing images into GLCM descriptors using Python.
Import the os module
Import numpy module as np
Import the skimage module
Import img_as_ubyte function from skimage module
Import greycomatrix function from skimage.feature module
Import greycoprops function from skimage.feature module
Import pandas module as pd
Import the matplotlib.pyplot module as plt
Assign a path to the directory containing microscopic images of currant powders

as image_dir
For each glcm_props:
if glcm_props is ‘contrast’:
output ‘contrast’
if glcm_props is ‘dissimilarity’:
output ‘diversity’
if glcm_props is ‘homogeneity’:
output ‘homogeneity’
if glcm_props is ‘energy’:
type ‘energy’
if glcm_props is ‘correlation’:
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print ‘correlation’
Create an empty list named results
For each file name in the image_dir directory:
If file_name_ends_on ‘.png’ or file_name_ends_on ‘.jpg’:
Create an image_path variable that contains a combination of image_dir path and

filename.
Load an image named “image” from the file whose path was previously stored in the

“image_path” variable, using the “imread” function from the “plt” module.
Create a copy of the image named “image_copy”, which will be an identical copy of

the image “image”, using the “copy” function from the “np” module.
Perform image transformation to integer values:
- assign the image value to the image_copy variable,
- use the img_as_ubyte() function to convert the image value to uint8 type,
- subtract the subtitle value from each element of the converted image.
Loop from 0 to length(distances) - 1:
If distances[i] == 1:
Print “one”
Otherwise if distances[i] == 2:
Print “two”
Otherwise if distances[i] == 3:
Print “three”
Loop from 0 to length(angles) - 1:
If angles[i] == 0:
Print “0 degrees”
Otherwise if angles[i] == np.pi/4:
Print “90 degrees”
Otherwise if angles[i] == np.pi/2:
Print “180 degrees”
Otherwise if angles[i] == 3*np.pi/4:
Print “270 degrees”
For each step in distances:
For each angle in angles:
Create a gray-value GLCM matrix for the image_uint with the specified step and angle.
Apply 256 levels of gray.
Set symmetry to true.
Set normalization to true.
For each property (prop) in the set of glcm_props:
Calculate the property values for GLCM and flatten them.
Store these values in the glcm_values dictionary under the key corresponding to the

property (prop).
Create a dictionary named result_row containing one field with key ‘Filename’, whose

value is filename.
For each property (prop) and value (values) in glcm_values:
For each index i and value val in the values list:
Add a field to the result_row dictionary whose key will be the concatenation of prop

and index i values, and whose value will be val.
Add the result_row dictionary to the results list.
Create a DataFrame object named df, using the data in the results list.
Save the contents of the DataFrame object df to a CSV file under the path ‘path_to_save_

data_file_with_csv_extension.csv’, without saving the indexes.

2.3. Machine Learning

In the next step of data mining, a learning set was prepared, consisting of 60 variables
responsible for image texture parameters and 1 decision variable informing about the
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type of blackcurrant powders. The type of currant powders is determined by their carrier
contained in the fruit solution. This was analogous to what was described in the work of
Przybyl et al. 2023 [38], 2024 [41], and they were carriers of 30% of the amount contained
in the fruit solution described above. The learning set consisted of 61 variables and
630 learning cases, which were used to train the models. Considering the research activities
of Przybył et al.’s 2024 [41] study of which models performed most effectively in identifying
fruit powders, among others, machine learning algorithms such as Decision Tree, Random
Forest, AdaBoost, Bagging, KNN, and LogisticRegression were selected [47]. The design
of these machine learning models was also performed using Python version 3.9. First, a
list of classifiers with established hyperparameters (Table 1) were imported from the scikit-
learn library, such as DecisionTreeClassifier, KNeighborsClassifier, LogisticRegression,
RandomForestClassifier, AdaBoostClassifier, and BaggingClassifier [48–50].

Table 1. The structure of hyperparameters used in classifier ensemble algorithms.

Machine Learning Algorithm Type Name Hyperparameters Used

DecisionTreeClassifier DT5 max_depth = 5
DecisionTreeClassifier DT3 max_depth = 3
DecisionTreeClassifier DT_best splitter = best
DecisionTreeClassifier DT0 default

RandomForestClassifier RF3_gini max_depth = 3, criterion = gini
RandomForestClassifier RF5_gini max_depth = 5, criterion = gini
RandomForestClassifier RF3 max_depth = 3, n_estimators = 1000
RandomForestClassifier RF5 max_depth = 5, n_estimators = 1000
RandomForestClassifier RF7_gini max_depth = 7, criterion = gini
RandomForestClassifier RF7 max_depth = 7, n_estimators = 1000

BaggingClassifier Bagging default
BaggingClassifier Bagging_100 n_estimators = 100

KNeighborsClassifier KNN default
LogisticRegression LogReg default

In the next step, a 70:30 split of the set was performed using the train_test_split
function (test_size function). Training and testing (TandT) translates into the fact that the
data are divided into two sets of training and testing at a ratio of 70% to 30%. In the training
and testing (TandT) method, a random data-selection process is carried out, i.e., the indexes
of the learning cases are shuffled in a random order so as not to affect specific learning cases
(i.e., with a given index) when teaching the models. At the initialization of each model,
hyperparameters such as max_depth (3 or 5), criterion (‘gini’), splitter (‘best’), n_estimators
(100 or 1000), and learning_rate (0.95) are determined, which are used to evaluate their
performance. The performance of the models was determined using quality indicators
such as accuracy, precision, recall, and F1-score, which were expressed according to the
following formulas [41,51–53]:

accuracy =
TP + TN

TP + TN + FP + FN
, (1)

precision =
TP

TP + FP
, (2)

recall =
TP

TP + FN
, (3)

F1-score = 2 · precision·recall
precision + recall

. (4)

The acronyms listed in the above equations correspond to the cases in the set, with
TP determining the number of true-positive cases, TN determining the number of true-
negative cases, FP explaining the number of false-positive cases, and FN telling the number
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of false-negative cases. The performance of classification models was evaluated using
various metrics that provide a more complete understanding of the model’s effectiveness,
which is important for decision making. The results are presented on a learning set as well
as a test set.

2.4. Interpretability of Decision Making in Machine Learning

The Local Interpretable Model-agnostic Explanations (LIME) technique was used to
discuss the explainability of the model relative to texture features [30,35,36]. LIME is one of
the most popular methods used for understanding data. The idea behind this technique is
based on local explanability against individual learning cases contained in the set. For an
established case, it is possible to estimate the results [54].

In this step of the study, a random analysis of each learning case was carried out
against image texture features to be able to understand the decision made by each model.
This method in machine learning estimated the probability of recognizing the selected type
of currant powders using the selected model. This provided a clearer approximation of the
behavior of individual models relative to texture features for blackcurrant powders. As a
result, it seems to be useful in terms of studying how the chosen machine learning algorithm
makes a particular decision for a particular learning case [36,54]. In addition, it highlighted
which image texture parameter is responsible for the selected type of fruit powders. The
procedure for performing XAI using LIME was as follows: the LIME package was imported
in Python, the LIME explainer was initialized, the number of samples to be explained was
determined, a random sampling mode was selected from the test set, decision making
explanability (model prediction) was performed, explanations were visualized for a random
5 repetitions, and 70 different explanations were obtained from the test set. The generation
of a large number of cases provided a more complete insight into the decisional process of
the proposed ‘glass box’ and ‘black box’ models (Figure 4).
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The explanatory validity of the models was performed using a local fit of the agnostic
model to the data set, which is defined as follows [54]:

L(x) = argming∈GL( f , g, πx) + Ω(g). (5)

The parameters defining the mathematical formula of the agnostic model were, respec-
tively: argming∈G, L( f , g, πx), and Ω(g). In the agnostic model, the parameter argming∈G
determined the models of the set G. In the research issue, set G refers to the proposed mod-
els, i.e., machine learning algorithms in terms of the texture characteristics of blackcurrant
powders. With the help of parameters L( f , g, πx), the loss function, that is, the difference
between the actual prediction of model f and the local prediction of model g for a given
learning case, was explained. The weights πx played the role of assigning them to specific
learning cases (x). The parameter Ω(g) was responsible for the regularization of the model
g. As a result, the agnostic model allowed us to explain the decisions made by models f for
specific learning cases.

3. Results and Discussion
3.1. The Results of Machine Learning

As a result of the learning, the capabilities of the selected machine learning algorithms
were evaluated. The critical decision parameter for the selection of classifiers was to achieve
a minimum performance of 0.7. In the literature and in experience with selecting classifiers
based on various performance metrics, improved parameter selection methods and multi-
criteria decision-making methodologies contribute to achieving the desired minimum
performance level, i.e., 0.7 [55–61]. This level in machine learning establishes a high rate of
model decision performance. In classification, it means 70% of correctly classified cases on
the test set. A high score shows that a given model generalizes well to the texture features
of currant powder images relative to the learning data.

In Figure 5, the results of learning the selected models are shown. This solution for tex-
ture features from the fruit powder image using 12 different combinations of relationships
between pixels in the image showed that the Random Forest (RF)-based model structure
performed most effectively. In relation to the setting of hyperparameters when initializing
this RF model, increasing the key hyperparameter max_depth led to better performance
of this model (Figure 5). However, more than half, i.e., 10 of the 17 classifiers, achieved
an accuracy rate of 0.8, of which 8 of the 17 models were able to correctly classify 90%.
To compare the models using, among other measures of classifier performance, such as
precision (Figure 6), recall (Figure 7), or F1-score (Figure 8), it is confirmed that 8 of the
17 models also achieved an accuracy rate of above 0.9 for the test set. Lastly, RF7_gini,
which achieved an accuracy rate of 0.963 on the test set, was 1 of the top 3 models for
this issue. The most effective model was the Bagging machine learning algorithm, i.e.,
Bagging_100 (0.974). This algorithm defines a typical ensemble machine learning technique
due to the fact that it generates multiple independent models during learning. Moreover,
the Bagging algorithm has the effect of reducing the variance of the model, which reduces
the phenomenon of overfitting [62]. Bagging was very good at dealing with the so-called
noise in this case of different attributes of image texture features in the learning set, which
translated into achieving better learning efficiency on the test set. In the literature, it is
considered that Bagging is one of the most effective algorithms for ensemble machine
learning [6,63]. In view of the above, it can be concluded that Bagging, Random Forest,
and Decision Tree models were sufficiently effective in recognizing currant powders on the
basis of deep analysis of image texture features. Considering the complexity of data with
smaller data sets of learning Random Forest, Decision Tree models are a better choice than
XGBoost or deep learning [64,65]. In comparison, Random Forests or Decision Trees are
easier to implement in industry due to their simple structure and interpretability [66–68].
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3.2. Interpretability of Machine Learning

Agnostic model interpretation (LIME) was undertaken to understand the proposed
models in relation to the results based on the image texture features of fruit powders.
The figures show local explanations of image texture features of currant powders against
70 randomly selected learning cases regardless of the proposed model. In Figures S1–S4,
based on the Decision Tree group, for the first DT5 model, the probability of classifying
currant powders with W, C, MD, F, and IN was explained at a level above 0.9 (Figure S1a–e).
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Variables such as correlation, dissimilarity, and homogeneity were responsible for the
features of this DT5 model. When comparing the DT3 model against specific learning cases,
it was most effective in recognizing currant powders involving GA and IN. The DT3 model
(Figure S2a–e) showed a correlation for characteristics such as homogeneity, contrast, and
correlation. For the DT_best model (Figure S3a–e), the identification of currant powders
was predicted most effectively with IN, C, GA, and F. The effect of variable dependence on
the models was interpreted using homogeneity, contrast, and dissimilarity. The last model
of the Decision Tree group was DT0 (Figure S4a–e), for which currant powders involving W,
C, MD, and F were predicted. The variables that identified this model were homogeneity,
contrast, correlation, and energy.

In the case of interpreting the agnostic model in the Random Forest group (Figures S5–S10),
the RF7_gini model (Figure S9a–e) achieved one of the highest learning rates on the test set.
The detailed analysis revealed that RF7_gini, with the help of homogeneity and correlation
features, respectively, accurately identified blackcurrant powders with GA and W carriers.
In addition, splitting the groups between ‘NOT in’ and ‘in’ allowed us to understand
which features influenced the prediction of the type of currant powder. In comparison
to other models in the Random Forest group, the explainability with the agnostic model
showed that homogeneity was the key attribute in identifying currant powders. In fact,
homogeneity made it possible to uniquely identify currant powders while extracting ho-
mogeneous areas of data from the proposed set. In the context of understanding these data
using ensemble machine learning models, i.e., Bagging_100 (Figure S11a–e) and Bagging
(Figure S12a–e), it can be noted that one and the other model successfully recognized
currant powders with F. The features that influenced the prediction of the selected class
(carrier F) were homogeneity, correlation and contrast. In parallel, the Bagging_100 model,
which achieved the highest measures of classifier performance, effectively predicted with
the same texture features currant powders with IN. It is worth noting that the KNN model
accurately classified test samples of currant powders with IN, GA, and C based on the
contrast parameter. The KNN model (Figure S13a–e) not only allowed the recognition of
3 different types of currant powders but also carried out the classification on the basis of
the contrast feature. But despite the fact that the KNN model explained the different types
of currant powders, its classifier performance measures only worked well. The last type
of model that was used to explain the data using the agnostic model was LogReg. The
LogReg model (Figure S14a–e) was able to identify 80% of learning cases of blackcurrant
powders containing carrier C, G, or F. It is worth mentioning that both the LogReg model
and the KNN model explained the differences between cases of fruit powders involving
the contrast parameter. This suggests that for both of these models, the contrast attribute
had a significant impact when classifying and explaining the data.

The effectiveness of the proposed models in classifying currant powder cases, as
mentioned above, was analyzed with a random selection of 70 cases on the test set. As a
result of these interpretations, none of the models demonstrated the ability to understand
the classification using the Entropy parameter. This means that the models did not find an
effective pattern or relationship for this feature. It is possible that the rather high complexity
of the data (12 combinations due to the direction and distance of the image pixel) in terms of
deep analysis of the texture data influenced the lack of Entropy dependency in the models’
decisions. Nevertheless, about 1 in 10 cases among all proposed algorithms recognized
blackcurrant powders involving C, GA, F, and IN, with 11 out of 70 cases explaining 70%
of currant powders involving C. For blackcurrant powders involving IN, it was effective
in 5 out of 70 cases. For blackcurrant powders involving F and GA, 8 of 70 and 9 of
70 randomly selected cases were explained in 70%, respectively. It was also observed that
the most successful models concentrated their attention on identifying currant powders
using carrier W (Random Forest) and MD (Bagging).

Interpretation of the results using an agnostic model identified selected features for
the proposed machine learning models. XAI clarified which learning cases were assigned
to specific types of blackcurrant powders. Some models explicitly interpreted blackcurrant
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powders with specific image texture features. This approach allowed us to understand
the models against the selected features, which will translate into adequate selection in
practical applications. Recently, it has been observed in the literature that the analysis
of model understanding of decisions is becoming very important. The reason for this is,
among other things, the collection of a lot of data and the generation of various models.
It is also worth noting that current machine learning and deep learning solutions have
significantly contributed to the development of many issues [30,35]. Currently, the solutions
of AI methods are faster and more effective than those used so far [41].

Multi-tasking AI has led to the development of numerous solutions using multi-
ple algorithms [54,69,70]. This has translated into the use of XAI, which can contribute
to greater clarity and understanding of machine learning models in these numerous is-
sues [30,33,34,71,72]. One can still see the need for further research on the explainability
of parameters in fruit powders to achieve, among others, an understanding of the factors
affecting their performance. In the future, determining the explainability of, among other
things, image texture features for fruit powders will allow their use in practice.

In comparison, the current literature mostly demonstrates the interpretability of data
using computer vision (image) or natural language processing (text) [31,34,35,73,74]. This
does not mean that understanding the data is impossible. This research focuses on the
interpretability as well as the meaning of image texture features in terms of numerically
extracted data. The application of the popular agnostic model (LIME) confirms its suitability
for blackcurrant powders.

In future research, I plan to continue researching advanced interpretability (XAI)
techniques to ensure full transparency of machine learning or deep learning models. Mainly,
the team intends to integrate data modality through numerical data, images, and text.
Specifically, when analyzing fruit powders, it will be worthwhile to incorporate texture
descriptions via composition, taste, numerical data, and their physical properties. This
will allow us to obtain a substantially complete understanding of the characteristics and
properties of the analyzed food product.

4. Conclusions

As a result of the explainability of the machine learning models, the different types of
blackcurrant powders were distinguished in this study. It was shown which models were
more effective in identifying currant powders. The types of blackcurrant powders were
also identified using texture features based on the GLCM matrix. XAI made it possible
to assess with what probability it classifies the selected model due to the type of currant
powder. It was shown that the most effective classification of fruit powders was achieved
using models from the black box group, i.e., Bagging and Random Forest. The Bagging_100
algorithm proved to be the most effective model, achieving such classifier measures for
accuracy, precision, recall, and F1-score of 0.979, 0.980, 0.979, and 0.979, respectively. In
comparison, among the proposed Random Forest models, the RF7_gini model also achieved
high classification performance, with accuracy, precision, recall, and F1-score of 0.963, 0.964,
0.963, and 0.963. In the case of the proposed Decision Trees models, the DT0 model also
achieved high classification performance, with accuracy, precision, recall, and F1-score
of 0.968, 0.972, 0.968, and 0.969. In consideration of the performance of learning models
on the basis of an accuracy index above a value of 0.7, 13 out of 14 models achieved
this result. XAI allowed a more in-depth representation of the determination of machine
learning models based on texture descriptors. In the future, we intend to conduct further
work on the explainability of artificial intelligence from the perspective of GLCM, which
plays an important role in image processing for fruit powders as well. This will translate
into implementing appropriate artificial intelligence methods based on specific image
attributes. The implementation of machine and deep learning in the production process
via, among other things, online monitoring of fruit powders will allow optimization of
current processes by adjusting parameters to achieve better quality of the final product.
These measures will reduce the waste of raw materials and energy. Continued research into
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the use of GLCM aided by artificial intelligence in image processing for fruit powders will
possibly contribute to a more accurate understanding of the characteristics and properties
of fruit powders. An appropriate understanding of fruit powders will enable producers to
obtain high-quality food products.
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of the test sample with indexes 54 (a), 84 (b), 57 (c), 139 (d), and 168 (e) using the DT3 model; Figure
S3. Explanation of the test sample with indexes 133 (a), 98 (b), 117 (c), 42 (d), and 44 (e) using the
DT_best model; Figure S4. Explanation of the test sample with indexes 188 (a), 115 (b), 71 (c), 27 (d),
and 58 (e) using the DT0 model. Figure S5. Explanation of the test sample with indexes 59 (a), 171 (b),
91 (c), 27 (d), and 102 (e) using the RF3_gini model; Figure S6. Explanation of the test sample with
indexes 127 (a), 91 (b), 161 (c), 47 (d), and 94 (e) using the RF5_gini model; Figure S7. Explanation of
the test sample with indexes 114 (a), 162 (b), 19 (c), 113 (d), and 61 (e) using the RF3 model; Figure S8.
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(c), 36 (d), and 55 (e) using the RF7 model; Figure S11. Explanation of the test sample with indexes
104 (a), 143 (b), 103 (c), 176 (d), and 116 (e) using the Bagging_100 model; Figure S12. Explanation
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