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Abstract: This study presents an advanced simulated shearer machine cutting experiment system
enhanced with digital twin technology. Central to this system is a simulated shearer drum, designed
based on similarity theory to accurately mirror the operational dynamics of actual mining cutters. The
setup incorporates a modified machining center equipped with sophisticated sensors that monitor
various parameters such as cutting states, forces, torque, vibration, temperature, and sound. These
sensors are crucial for precisely simulating the shearer cutting actions. The integration of digital
twin technology is pivotal, featuring a real-time data management layer, a dynamic simulation
mechanism model layer, and an application service layer that facilitates virtual experiments and
algorithm refinement. This multifaceted approach allows for in-depth analysis of simulated coal
cutting, utilizing sensor data to comprehensively evaluate the shearer’s performance. The study
also includes tests on simulated coal samples. The system effectively conducts experiments and
captures cutting condition signals via the sensors. Through time domain analysis of these signals,
gathered while cutting materials of varying strengths, it is determined that the cutting force signal
characteristics are particularly distinct. By isolating the cutting force signal as a key feature, the
system can effectively distinguish between different cutting modes. This capability provides a robust
experimental basis for coal rock identification research, offering significant insights into the nuances
of shearer operation.

Keywords: shearer; similarity theory; digital twin; cutting experiment system

1. Introduction

While new clean energy technologies are experiencing rapid development, fossil
energy continues to serve as the predominant global energy source. In 2022, there was
a 1% increase in global energy demand compared to the previous year, with fossil fuels
contributing 82% of the total energy supply. China’s overall energy consumption rose to
5.41 billion metric tons of standard coal in 2022, marking a 2.9% increase from the preceding
year. Longwall mining utilizing a shearer stands out as the most widely utilized method
among underground coal mining techniques. The efficiency and productivity of longwall
mining operations hinge upon the cutting performance of the shearer along the longwall
face [1,2].

As a crucial component of the fully mechanized mining system, the shearer plays a
key role in enabling efficient and concentrated coal extraction processes. This advancement
has notably diminished the frequency of safety incidents in coal mines and enhanced the
occupational environment for miners. The successful deployment of intelligent control
mechanisms for the shearer is essential for the potential automation of fully mechanized
mining operations. Consequently, the technology for distinguishing between coal and
rock has been the subject of widespread study and focus [3–5]. Current methods for
identifying coal and rock primarily utilize the operational signals produced during the
shearer’s cutting of various coal and rock formations for classification purposes [6,7]. Thus,
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to yield significant insights, the experimental systems designed to simulate the shearer’s
cutting process must adhere to specific standards of resemblance and dependability.

The methodologies employed by researchers to conduct experimental investigations
for coal and rock identification predominantly encompass:

• In situ experiments, where sensors and measurement instruments are deployed di-
rectly on the mining face to gather operational signals from coal and rock for subse-
quent analysis and evaluation [8];

• Surface experiments, involving the use of an actual coal mining apparatus to perform
real-life cutting tests on coal and rock on the surface, thereby collecting a range of
performance metrics [9–11];

• Simulating shearer drum cutting tests, wherein scholars have devised and fabricated a
simulating shearer drum apparatus to replicate the cutting actions on coal and rock
materials [12–14];

In situ collection directly at the coal mining face guarantees the authenticity of the
data acquired, yet it is subject to the constraints of a high-risk and severe work setting.
Concurrently, devices used for signal collection must comply with explosion-proof stan-
dards, which escalates the experimental risk. Conducting experiments on the ground
necessitates the availability of coal mining machinery, genuine coal and rock mediums,
and pertinent apparatus, leading to relatively high testing expenses. On the other hand,
the simulating shearer drum cutting experiment offers a cost-efficient approach to simu-
lation experiments, although the reliability of this system remains a topic that warrants
further examination. The simulating shearer drum experiment serves as an effective tool
for analyzing and investigating the diverse information produced during the coal mining
process, particularly in the study of coal and rock identification. For the precise replication
of the shearer’s operational state while cutting, both the experimental apparatus and the
simulation materials, constructed based on similarity theory, must closely resemble the
original model. Currently, comprehensive and systematic research on experiments for
identifying coal and rock is lacking.

Digital twin technology involves creating a virtual model of a physical entity in a digi-
tal format, enabling a bidirectional mapping, dynamic interaction, and real-time connection
between the physical and digital spaces, as shown in Figure 1. Through digital twins, the
attributes, structure, state, performance, functionalities, and behaviors of physical entities
are mapped into the digital world, forming highly realistic dynamic multi-dimensional,
multi-scale, and multi-physical models. The evolution of the digital twin is divided into
three stages [15]: the virtual model stage, the basic digital twin stage, and the adaptive
digital twin stage. In the first stage, we achieved digital twin modeling of the physical
entity; in the second stage, we achieved data intercommunication between the twin and
the physical domain, including data transfer and interaction between different digital twin
models as well as between the digital model and the physical model; the third stage is the
adaptive digital twin, aimed at achieving precise prediction of the physical entity by the
digital twin and full-process collaborative optimization control. Therefore, drawing on
existing research and simulation of similar theoretical principles, this paper outlines the
development and construction of an experimental system for digital twin cutting of coal
mining machines, aiming to collect performance data and realize the first two stages of
digital twinning.

The digital twin cutting system is primarily divided into physical and digital spaces,
with data exchange between the two spaces facilitated through IoT technology. The physical
space consists of three parts: the cutting section, the experimental platform feed device, and
the electrical control section. The experimental platform is modified from the machining
center, with major modifications including the design of a simulated drum; a cutting state
detection sensor system; and the addition of three-dimensional cutting force, drum torque,
vibration, and sound sensors. A grating scale sensor has been added to the feed device
section of the experimental platform. The electrical control section has been enhanced with
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a worktable motor inverter and a cutting motor inverter, enabling speed control of these
motors. The digital twin cutting experiment system block diagram is shown in Figure 2.
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The digital space comprises the data layer, the model layer, and the application layer,
including the visualization of the experimental platform’s digital twin. The data layer is
responsible for data forwarding, storage, management, and collection, covering coal rock
sample data, experimental platform operational data, algorithm model data, and sensor
data. The mechanism model layer includes the mechanism model, the geometric model of
the cutting experimental platform, and the coal rock sample model. The application layer
involves model evolution physical cutting experiments, algorithm training virtual cutting
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experiments, and physical synchronous cutting experiments with the digital twin. The
design process diagram of the digital twin cutting experiment system is shown in Figure 3.
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2. Design of the Simulated Shearer Drum

The design of the simulated drum is the key to the entire experimental system. Only
by following the similarity theory can we ensure the similarity between the cutting of the
simulated drum and the cutting of the coal mining machine in the coal mine.

2.1. Principle of Similarity Theory

The similarity π theory can be stated as: “For a physical system that contains n physical
quantities and k fundamental dimensions, these n physical quantities can be expressed as
a functional relationship among (n − k) independent similarity criteria π1, π2, . . ., πn−k”.
This means that any physical equation:

f(x1, x2, x3, . . . , xn) = 0 (1)

can be rewritten according to the similarity π theory as:

ψ(π1, π2, π3, . . . , πn−k) = 0 (2)

Through this transformation, the original physical equation is converted into a criterion
relation, simplifying the problem. When the prototype and the model are similar, if the
similarity criteria maintain the same value at corresponding points and corresponding
moments, then their π relations should also be identical, that is:{

ψ(π1, π2, π3, . . . , πn−k)p = 0
ψ(π1, π2, π3, . . . , πn−k)m = 0

(3)

The second similarity theorem indicates that in mutually similar phenomena, the
similarity criteria do not need to be derived using similarity indicators. As long as the
relationship equations of various physical quantities are converted into the form of dimen-
sionless equations, the terms of these equations are the similarity criteria.

pi is used to represent the ith physical quantity in a system, and mi to represent the
corresponding physical quantity in another system (a similar system). The ratio of these
two physical quantities is called the similarity coefficient (or transformation coefficient),
denoted as Ci:

Ci =
pi
mi

(4)
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Equation (4) indicates that every physical quantity of a system is converted into the
corresponding physical quantity in another system through the linear transformation of the
parameter Ci. In the transformation, the transformation coefficients Ci for different physical
quantities (such as the modulus of elasticity E and length L) can be different, but within the
set of similar systems, each transformation coefficient Ci is strictly constant. In similarity
analysis, different similarity coefficients Ci play the role of assigning values to different
physical quantities (including geometric quantities). The choice of similarity coefficients Ci
depends on the nature of the problem under study and experimental conditions, among
other factors. Moreover, the similarity coefficients are constant in two similar systems but
have different values for a third system that is similar to these two systems.

2.2. Design of the Simulated Drum

As the core cutting component in the coal mining machine’s cutting process, designing
a similar simulation around the cutting drum is key to ensuring the experimental system
and the prototype machine’s working conditions are similar. The simulation cutting
drum builds processes based on similarity theory as shown in Figure 4. Therefore, this
thesis focuses on the drum structure of the coal mining machine as the main research
subject, derives similarity criteria through MLT dimensional analysis, and studies the
cutting mechanism of the drum during operation, as well as the related motion and
structural parameters.
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Figure 4. The simulation cutting drum builds processes based on similarity theory.

Parameters defining the drum’s geometric structure as Table 1 include its overall
diameter (D), the external diameter of the blade (Dy), the depth of cut made by the drum
(B), the angle of elevation for the spiral blade (αy), the leading distance of the blade (L), the
total number of blade heads (Z), the spacing between blades (Sy), the angle of wrap for the
blade around the hub (βy), the spacing of the picks (Tc), the angle at which the picks are
mounted (γ), and the angle of pick inclination (λs). For material parameters, the focus lies
on simulating the compressive strength (σ) and the density (ρ) of coal and rock, in line with
the criteria for coal and rock identification. Operational parameters encompass the range
of the swing angle (θ) for the rocker arm, the rotational velocity of the drum (n), and the
speed of traction (v) [16].
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Table 1. Parameters of the simulated shearer cutting system.

Parameters Symbols Units M L T

Drum diameter D mm 0 1 0
Blade outer edge diameter Dy mm 0 1 0

Drum cut depth B mm 0 1 0
Spiral blade lift angle αy

◦ 0 0 0
lead of the blade L mm 0 1 0

Blade head number Z null 0 0 0
Blade pitch Sy mm 0 1 0

Blade hub wrap angle βy
◦ 0 0 0

Pick pitch Tc mm 0 1 0
Pick installation angle γ ◦ 0 0 0
Pick inclination angle λs

◦ 0 0 0
Rotating speed of drum n r/min 0 0 −1

Traction speed v m/min 0 1 −1
Density ρ kg/m3 1 −3 0

Compressive strength σ Mpa 1 −1 −2

Using the MLT basic dimensional system (i.e., mass, length, time), the values and
dimensions of the relevant parameters of the prototype are listed. In the design of similar
models, dimensionless physical quantities have the same values between the prototype and
the model, making it unnecessary to derive related similarity criteria. From the analysis
above, it is necessary to derive similarity criteria for a total of five parameters as Table 2:
D, n, ρ, v, σ. According to the second theorem of similarity (the π theorem), with five
similarity parameters and three basic dimensions, the number of π rules is two, calculated
as 5-3. Dimensional analysis shows that D, n, ρ include the three basic dimensions of
M, L, T, and the determinant formed by them is not zero. They correspond, respectively,
to parameters related to the structure of the cutting part, the motion parameters of the
coal mining machine, and the characteristics of the cutting material. Therefore, these are
selected as the basic physical quantities to list in the dimensional matrix exponent table.

Table 2. Dimensional matrix of spiral drum design parameters.

Parameters n ρ D v σ

Index a1 a2 a3 a4 a5
M 0 1 0 0 1
L 0 −3 1 1 −1
T −1 0 0 −1 −2

Use the exponential method to analyze the dimensions of the system and obtain the
linear homogeneous equations of the quality system.

M : a2 + a5 = 0
L : − 3a2 + a3 + a4 − a5 = 0
T : − a1 − a4 − 2a5 = 0

(5)

The similarity criterion for calculating different dimension parameters is:{
π1 = v

nD
π2 = σ

n2 ρD2
(6)

The π term is an invariant, and the similarity index is one according to the first
similarity theorem. The similarity coefficient expression is as follows:{

CnCD = Cv
CρC2

v = Cσ
(7)
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The similarity coefficient for drum diameter, CD, requires that the model drum diam-
eter be ≤400 mm, therefore CD is set to 1/3 as Table 3. The simulated cutting material is
made from coal dust and rock dust cut by the prototype machine, hence Cρ equals 1.

Table 3. Similarity coefficients of the simulated shearer cutting system.

Prototype Model Prototype Model

D D/3 Tc Tc/3
Dy Dy/3 γ γ

B B/3 λs λs
αy αy n

√
3n

L L/3 v v/
√

3
Z Z ρ ρ

Sy Sy/3 σ σ/3
βy βy

Based on the structure of the prototype shearer, it is determined that the simulated
cutting drum is configured with teeth arranged in a sequential manner. The number of
blade heads on the drum is set to two, corresponding to three cutting lines, with two teeth
configured on each cutting line. Based on this, establish the model of the cutting drum, as
shown in Figure 5.
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3. The Device Structure of the Experimental Platform

The physical experimental platform was constructed through a comprehensive modifi-
cation of the machining center model machine tool, involving multiple key components: the
base, bed, lifting platform, saddle, workbench, crossbeam, and tool post support, among
others. The base provides fundamental support for the machine tool, with its stability being
crucial to the overall work efficiency and precision of the machine; the bed serves as the
main frame of the machine tool, supporting the installation of various parts. Positioned
at the top of the bed, and connected through dovetail guides, the crossbeam is equipped
with a drum support at its front, facilitating the installation of other tools or devices. The
lifting platform enhances the flexibility and functionality of the machine tool by enabling
vertical movement of the workbench through a vertical screw connected to the nut on the
base. The workbench, including the rotary table and saddle, plays a key role in performing
specific tasks and can accommodate a variety of work demands.

This modification focuses on three main aspects:
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• The design and improvement of the spindle part—the primary task is to develop a
spindle part suitable for the experimental device, including designing an appropriate
drum device and connecting it to the machine tool’s spindle. This step is vital to
ensuring that the machine tool can perform the required experimental operations.

• The integration of sensors and data acquisition systems—to accurately monitor and
evaluate various parameters during the experimental process, the experimental device
integrates efficient sensors and data acquisition systems. This includes measuring
physical parameters such as force, temperature, and vibration, and involves the real-
time collection, processing, and analysis of data to ensure the accuracy and reliability
of experimental results.

• The development and application of the numerical control system—an advanced
numerical control system has been developed to precisely control the spindle cutting
motor and the workbench motor. This system is not only easy to use but also pro-
vides high precision and rapid response control, meeting the complex experimental
requirements and changing work conditions.

Through these modifications, the physical experimental platform has significantly
improved in flexibility, precision, and efficiency.

3.1. Design of the Experimental Platform Spindle

The main feature of the physical experimental platform is its complex main motion
transmission system. This system transmits the rotary power of the cutting motor through
a series of precisely configured transmission shafts (Shafts I to IV) to the main spindle. The
spindle then drives the simulated cutting drum mounted on it to perform cutting actions,
simulating the operation of a real coal mining machine. The power transmission process
starts from the cutting motor and ends with the simulated drum, with multiple mechanical
components working together to complete the power transmission and speed change.

In the initial stage, the power of the cutting motor is transmitted to Shaft I through
a flexible coupling, ensuring that Shaft I rotates at the same speed as the motor. Shaft I
uses a pair of fixed gear ratios to transmit power to Shaft II. Shaft II is equipped with a
triple sliding gear device, which can provide three different speeds to Shaft III as needed.
Similarly, the triple sliding gears on Shaft IV mesh with the gears on Shaft III, allowing
Shaft IV to achieve three speeds based on the speed of Shaft III. Thus, Shaft IV can achieve
nine different speed changes. Moreover, the double sliding gears at the right end of Shaft
IV mesh with the gears on the spindle, allowing the spindle to reach eighteen different
speeds to meet various cutting conditions.

The spindle is a carefully designed hollow shaft, equipped with a special centering
cone hole, end plane, and external cylindrical surface at the front end, along with two
end-face keys, intended to ensure effective torque transmission and precise positioning of
the equipment. The through-hole of the spindle is used for installing the tensioning tool
rod and provides a pathway for the sensor cables on the drum to pass through to the rear
signal collection device. To accurately monitor the cutting torque of the simulated drum, a
torque sensor is installed between the spindle and the drum. To minimize the impact of
tangential forces on the measurement, the sensor is externally equipped with a bearing
seat, fixed to the top beam, effectively bearing tangential forces and ensuring accurate
measurement. The flanges at both ends of the torque sensor are connected to the external
cylindrical surface of the spindle and the simulated drum through a coupling, ensuring
efficient power transmission and precise control. The model and physical structure of the
platform spindle are shown in Figure 6.
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3.2. Design of the Sensor and Acquisition System

This article illustrates the working principles and operational frequency bandwidths
of various types of sensors on the experimental platform by analogizing the sensors’
functioning and frequency responses with the human body’s visual, tactile, and auditory
models as shown in Figure 7. The experimental platform includes thermal imaging, three-
dimensional force, torque, vibration, and sound sensors, which are used to detect visual,
force, tactile, and auditory signals, respectively. The thermal imaging sensor operates within
a frequency range of 0 to 2 Hz, mainly for visual signal detection. The three-dimensional
force and torque sensors have a bandwidth of 0 to 2 kHz, used for force detection. The
vibration sensor’s bandwidth ranges from 0 to 10 kHz, for tactile signal detection. The
sound sensor operates over a wider bandwidth, from 20 to 20 kHz, for auditory signal
detection. The differences in these bandwidths reflect the capabilities of the sensors to
capture the respective physical signals.
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The experimental platform utilizes multimodal sensors to comprehensively monitor
the operation of the experimental platform, including temperature changes during the
cutting process, three-dimensional force on the cutting teeth, drum torque, simulated
drum vibration, cutting noise, drum rotation speed, worktable displacement, and cutting
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motor current. This monitoring network consists of a three-dimensional force sensor,
a torque sensor, two grating scale sensors, an axial encoder sensor, three Hall current
sensors, a vibration acceleration sensor, and a sound sensor, ensuring precise monitoring
of the coal mining machine’s operational status. Through this system, researchers can
accurately record and analyze the operational data of coal mining machines in a simulated
environment, which is crucial for understanding the working principles of coal mining
machines, identifying potential issues, optimizing design, and improving efficiency.

3.2.1. Drum-Monitoring Sensor System

The simulated drum parameter monitoring sensor system includes a cutter tooth three-
dimensional force sensor, drum torque sensor, vibration sensor, and sensor acquisition
system. The cutter tooth three-dimensional force sensor is specifically designed for coal and
rock cutting conditions, capable of detecting the three-dimensional force on the cutter tooth,
with X, Y, and Z signal output channels [17]. Each channel has its own independent signal
collection circuit, ensuring no interference between any two channels and guaranteeing the
sensor’s authenticity and reliability. In simulated cutting tests, it is necessary to measure
the cutting torque of the multi-tooth experimental drum. The torque sensor is installed on
the main drive shaft of the experimental stand to capture torque data during the cutting
process, supporting the analysis of cutting performance. An IEPE vibration sensor is chosen
for its strong anti-interference capability and wide frequency response range up to 15 KHz
(±3 dB), with a measurement range of ±50 g. Sensors are connected to magnetic bases
through threads, and magnetic bases are adhered to the surface with polishing glue. Both
the cutter tooth three-dimensional force sensor and the drum torque sensor are based
on the strain gauge principle and have undergone sensitivity and linearity checks before
leaving the factory. To ensure data accuracy, the collection system still requires calibration,
as shown in Figure 8.
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To match the input signals of the selected data acquisition card, all of the sensors’ out-
put signals were uniformly converted to voltage signals. Appropriate signal conditioners
were chosen based on the characteristics of each signal for processing. Then, the sensors’
output voltage signals were transmitted to the computer through the data acquisition board.
The hardware architecture of the experimental setup’s measurement is shown in Figure 9.
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3.2.2. Platform Monitoring Sensor System

The experimental platform sensor monitoring system is meticulously designed to
capture and analyze a wide range of parameters that are essential for evaluating the perfor-
mance and condition of mechanical systems. It includes several advanced components, as
shown in Figures 10 and 11.
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Figure 10. (a) Grating Ruler Sensor; (b) Motor Current Transformer; (c) Motor Voltage Transformer.

Grating Ruler Sensor: Acquires high-precision positional information related to dis-
placement, operating on precise measurements from a grating scale. This is crucial for
tasks demanding high accuracy. Drum Rotary Encoder: Gathers data on the rotational
angle of the main spindle, key for understanding the dynamics of drum rotation and
providing insights into the spindle’s speed and direction. Cutting Sound Sensor: With
an IEPE (integrated electronics piezoelectric) sound sensor, the system captures ambient
noise, including sounds from cutting operations. Powered by a constant current source,
it converts acoustic signals to voltage signals for noise analysis, useful in monitoring tool
wear or detecting operational anomalies. Motor Current Transformer: Monitors electric
currents across three channels (A, B, and C) of the motor, aiding in the detection of phase
imbalances. Motor Voltage Transformer: Tracks the voltage signals from the inverter to
the motor.
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Additionally, the system incorporates a data acquisition converter essential for con-
verting analog signals into digital data for computer analysis, as shown in Figure 12. This
feature enables comprehensive analysis of sensor data, supports real-time monitoring, and
aids in post-operation evaluation.
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3.3. Design of the Control System

Due to the design limitations of its spindle transmission system and feed transmission
system, the machining center can only select from a few fixed gear ratios, which fails to
meet the diverse requirements for spindle cutting speed and feed speed in cutting tests.
Cutting tests are a crucial part of determining machining conditions, including choosing
the optimal spindle speed and coal rock sample movement speed, to ensure high efficiency
and precision in the machining process. To address this issue, a specialized numerical
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control (NC) system for the cutting experimental apparatus was developed. This system is
designed to provide precise control over the cutting process, enabling adjustments to the
spindle cutting speed and workpiece feed speed beyond the original fixed gear ratios of
the machining center.

The core of this NC system consists of two main parts: control of the spindle cutting
motor and control of the worktable motor, as shown in Figure 13. The spindle cutting motor
control is responsible for adjusting the cutting speed of the spindle, allowing for a wide and
precise range of speeds. This flexibility is crucial for conducting cutting tests under various
conditions to identify the most efficient cutting parameters. Similarly, the control of the
worktable motor plays a key role in managing the feed speed of the workpiece. By precisely
controlling the movement of the worktable, the system ensures that coal rock samples are
fed at the optimal speed. The electrical control device for the cutting experimental platform
is shown in Figure 14.
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4. Software System Design in Digital Space
4.1. Application Service Layer

The evolution of the physical cutting experimental model is achieved by setting rollers
with different rotation speeds and X, Y, Z sliding tables with different feed speeds to cut n
groups of coal and rock samples with different hardness and distribution characteristics, as
shown in Figure 15. This process allows for the collection of corresponding sensor data,
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which is then used to continuously revise and update the model of the cutting mechanism
on the experimental platform.
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The planning and control algorithm training for virtual cutting tests begins with set-
ting an initial coal and rock model, as shown in Figure 16. Then, based on the cutting
planning and control algorithms, virtual cutting is conducted in a digital twin environment.
By analyzing the state perception data of the digital twin, the cutting state is identified, and
the cutting planning and control algorithms are adjusted accordingly. In the virtual envi-
ronment, a closed-loop system of planning–control–cutting–feedback is formed, allowing
for continuous optimization and updating of the planning and control algorithms.
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The synchronous cutting experiment of the twin–physical system is divided into two
main areas: the digital space and the physical space, as shown in Figure 17. The digital
space cutting planning algorithm refers to the initial stage where a digital algorithm is used
to plan how the cutting of the coal rock samples will be executed. Cutting after planning,
the control algorithm would be responsible for the actual execution of the cutting process
in the digital twin system. The experimental platform digital twin represents a virtual
replica of the physical experimental platform, where the cutting algorithms are tested.
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Based on feedback and results from the digital twin, the coal rock model is updated to
reflect new insights or to improve the cutting process. The physical space is a set of actual
physical samples that will be cut in the experiment. Experimental platform is the physical
counterpart to the digital twin where the actual cutting takes place. Real-time sensors
on the experimental platform provide real-time data on the cutting process. The system
recognizes the state of the cutting process, using real-time sensor data.
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Figure 17. Synchronous cutting experiment of twin–physical system.

The synchronization (labeled “Sync”) between the digital twin and the physical plat-
form suggests that data and insights are shared between the two to ensure that the digital
planning and control algorithms are accurate and reflective of the real-world physical
cutting process. Overall, the system is designed to use a digital–physical twin approach to
simulate, plan, and control the cutting of coal rock samples, aiming for optimization of the
process and better prediction of outcomes.

4.2. Model Layer

The model layer mainly analyzes and stores the following models: the geometric
model of the cutting experiment platform, the geometric model of the coal rock sample,
and the mechanism model of the cutting experiment platform.

4.2.1. Geometric Model

The geometric model refers to a mathematical representation method used to describe
the shape and structure of objects. Geometric models are three-dimensional (such as solid
objects) and aim to mathematically capture and express the geometric features of objects,
enabling computers to process, analyze, render, and simulate them. Geometric models
are usually represented by data structures consisting of vertices, edges, and faces, which
can construct complex geometric models, from simple geometric bodies to highly detailed
3D models.

The geometric models of the cutting experiment platform mainly include: X- and
Y-axis feeding, the Z-axis lifting model, and the cutting unit model, as shown in Figure 18.
X- and Y-axis feeding and the Z-axis lifting model describe the motion control of the cutting
device in three orthogonal directions, including the adjustment of feeding speed and lifting
speed. The cutting unit model refers to the design and functionality of a single cutting
drum that completes the coal rock cutting task.
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The coal rock sample model includes: the 3D model of the coal rock sample and
the coal rock interface model of the coal rock sample. The 3D model of the coal rock
sample represents the three-dimensional appearance of the coal rock sample, containing
the shape, size, and internal structure of the coal rock. The coal rock interface model studies
the properties of the interface between coal and rock, which is crucial for understanding
mechanical behavior and cutting efficiency during the cutting process.

4.2.2. Mechanism Model

The mechanism model is a type of model used to describe and explain the behavior
of a phenomenon or system. It is based on an understanding of the system’s internal
mechanisms, principles, and interactions, revealing the rules and processes of the system’s
operation at a microscopic level. Mechanism models are usually established on the basis
of a professional field, focusing on the components of the system and their interactions.
They describe the dynamic characteristics and behavior of the system through mathe-
matical equations, logical relationships, or graphics. Mechanism models emphasize an
understanding of the internal mechanisms and processes of the system, offering stronger
interpretability. The mechanism models of the cutting experiment platform include: the
single-tooth force model, the simulated drum force model, the cutting power transmission
model, and the cutting and feeding motor model.

The single-tooth force model focuses on the mechanical behavior and force conditions
of a single cutting tooth during the coal rock cutting process. The simulated drum force
model simulates the force generated by the drum during coal rock cutting, including the
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drum’s dynamic parameters and force. The cutting power transmission model analyzes
the energy transfer path from the power source to the cutting head, and how the power is
transmitted and acts on the coal rock.

This system transmits the rotary power of the cutting motor through a series of
precisely configured transmission shafts (Shafts I to IV) to the main spindle. Taking
a single-stage parallel-axis system as an example, the translational–rotational model is
presented in Figure 19, and its corresponding dynamical equations are formulated as shown
in Equation (8). The lumped parameter model for the multistage gearbox of the cutting
experimental platform is shown in Figure 20.
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.
δ12

)
sin α12 − kx1x1 − cx1

.
x1

m1
..
y1 =

(
k12δ12 + c12

.
δ12

)
cos α12 − ky1y1 − cy1

.
y1

m2
..
x2 =

(
k12δ12 + c12

.
δ12

)
sin α12 − kx2x2 − cx2

.
x2

m2
..
y2 = −

(
k12δ12 + c12

.
δ12

)
cos α12 − ky2y2 − cy2

.
y2

J1
..
θ1 = T1 −

(
k12δ12 + c12

.
δ12

)
r1

J2
..
θ2 =

(
k12δ12 + c12

.
δ12

)
r2 − T2

δ12 = (x1 − x2) sin α12 − (y1 − y2) cos α12 + r1θ1 − r2θ2 − e12(θ1, θ2)
e12(θ1, θ2) = E12 sin(Z1θ1 + ζ12) + E1 sin(θ1 + η1) + E2 sin(θ2 + η2 + α12)

(8)
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Figure 19. Translational–rotational model of a fixed-shaft gear set.

The variable ri denotes the base circle radius of gear i (where i = 1, 2); θi represents
the rotational angle of the gear; k12, C12, e12, and α12, respectively, signify the time-varying
mesh stiffness, mesh damping, cumulative mesh error, and mesh angle of the gear pair.
kxi, kyi, cxi, and cyi correspond to the radial support stiffness and damping in the x and
y directions for gear i; Ti refers to the torque acting on gear i. E12 and Ei, respectively,
represent the amplitudes of the meshing frequency error for the gear pair and the rotational
frequency error of gear i; ζ12 and ηi are the initial phases of the meshing frequency error
and rotational frequency error, respectively; δ12 is the meshing deformation on the tooth
surface engagement line considering the comprehensive error.

The equations of motion for the cutting motor model, the cutting drive system dynamic
model, and the drum load model are compiled and organized into matrix form. This yields
the electromechanical coupled system dynamics mathematical model for the cutting section,
as shown in Equation (9).

M
..
X+(Cm+Ct)

.
X+(Km+Kt+Kb)X = TL+Te (9)
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In the equation, X represents the generalized coordinate vector, with X = [xi yi θi],
where i = m, 1, 2, . . ., 5, d; M, TL, and Te are the generalized mass matrix, system load
vector, and the electromagnetic torque vector of the cutting motor, respectively. Km, Kt,
and Kb, respectively, represent the mesh stiffness matrix, torsional stiffness matrix, and
bearing stiffness matrix, respectively; Cm and Ct represent the mesh damping matrix and
torsional damping matrix, respectively. The equations in Equation (9) describe a system of
second-order differential equations for the mechanical transmission system. For ease of
computation, it is first necessary to reduce the order, transforming it as follows:

d
dt X =

.
X

d
dt

.
X = −M−1(Cm + Ct)

.
X − M−1(Km + Kt + Kb)X

+M−1(TL + Te)

(10)

This can further be expressed in matrix form:{ .
X
..
X

}
=

[
I 0

−M−1(Cm + Ct) −M−1(Km + Kt + Kb)

]{
X
.
X

}
+

{
0

M−1(TL + Te)

} (11)

Based on the aforementioned mathematical model, simulation models of the cutting
motor and the cutting drive system are constructed separately on the MATLAB/Simulink
(R2022b) platform, as shown in Figure 21. The angular displacement and angular velocity
of the cutting motor are used as shared variables to transfer data between the cutting
motor and the cutting drive system. This data is then used to calculate in real time the
torsional load on the motor output shaft, which is directly fed back to the cutting motor.
Consequently, this process establishes an electromechanical coupled simulation model for
the cutting drive system.
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During computation, the ode45 solver provided in MATLAB is utilized (employing
the fourth- and fifth-order Runge–Kutta method, which uses a fourth-order method to
generate candidate solutions and a fifth-order method to control errors, constituting an
adaptive step-size numerical solution technique for ordinary differential equations). This
allows for the solving of the system’s differential equations, thereby obtaining the dynamic
response of each component of the system.

4.3. Data Layer

The data layer involves the composition of data and its flow process. Its core func-
tions include data management, data forwarding, data storage, and data collection. Data
management, as the foundation of the data layer, includes the organization, cleaning, and
transformation of data, and ensuring data quality and consistency. Data forwarding is
mainly responsible for transferring data from one part of the system to another, such as
from a storage system to an application server. Data storage focuses on storing collected
data in databases for subsequent querying, analysis, and processing. Data collection is the
process of acquiring data from various sensor terminals.

The composition of the data layer includes coal rock sample model data, cutting
experimental platform model data, algorithm model data, and sensor data. Coal rock
sample model data refers to the attribute data used to create three-dimensional models
and predict and analyze the characteristics of coal rock samples. Cutting experimental
platform model data involves the parameters of the three-dimensional model of the cutting
experimental platform, which are used to build the simulation model of the cutting process.
Algorithm model data is generated by processing and analyzing collected data through
machine learning or other data analysis methods, producing data used for prediction
or decision support. Sensor data refers to the information collected in real time from
experimental platform sensors, which is crucial for monitoring and controlling the cutting
process. In summary, the data layer spans the entire process from data collection and
processing to application, forming a complete data management and analysis system.

Figure 22 illustrates the architecture and process of a data application developed
using Node.js (v20.13.1) which, with its event-driven and non-blocking I/O capabilities,
can efficiently handle a large number of concurrent operations, making it highly suitable
for web applications and systems that require high-performance I/O operations. The
entire architecture is based on an event-driven and non-blocking I/O model to optimize
performance and concurrency handling.
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Node.js is used to build WebSocket services for different applications. It is a server-side
JavaScript runtime environment based on Google’s Chrome V8 engine, capable of executing
JavaScript code. Node.js inherently supports TCP/IP and HTTP protocols, while building
WebSocket protocols with Node.js requires the additional use of the core HTTP Server
library provided by Node.js. This article has chosen the WS library for construction, which
can be directly downloaded and installed using NPM. Node.js is not limited to server-side
operations but can also be used in the Internet of Things (IoT). Applications can interact
with the physical space of the real world, such as collecting sensor data and controlling
motors through I/O operations.

The core of the software is the Event Loop, supported by the libuv library. libuv
is a library specially designed for asynchronous I/O operations, which works across
platforms and plays a key role in Node.js. The Event Loop is responsible for coordinating all
asynchronous operations in the program. The Event Queue lists various types of operations
waiting to be processed, including the Internet of Things (IoT), databases (MySQL), three-
dimensional engines (Unity 3D), application logic layer (Application), and data model layer
(Model). These operations are queued and wait for the Event Loop to process them in order.
Worker threads are responsible for handling operations that may block the Event Loop.
In Node.js, these operations are usually performed through built-in modules or extension
modules, such as file system access, network requests, or executing some CPU-intensive
processing tasks.

4.4. Digital Twin System Interaction Interface

Experimental platform digital twin systems are created using Unity3D (2020.3.43 f1c1),
where three-dimensional models are imported and then driven based on sensor data. The
steps for importing 3D models are as follows: First, prepare the model file and use 3ds
Max (20.2.0.2320) software to convert the experimental platform model into an fbx format
supported by Unity3D, as shown in Figure 23.

Then, drag the model file into the Assets folder of the Unity3D editor to complete
the import of the model file. Unity3D will automatically process the imported model.
Next, drag the imported model from the Assets folder to the scene, and adjust the model’s
position, rotation angle, and scale to meet the requirements of the scene.
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Figure 23. (a) Expanded UV grid; (b) UV mapping; (c) heat map rendering.

Programming is required to process sensor data. First, determine the type and interface
of the sensor used. In Unity3D, C# scripts can be written to read sensor data. In addition,
the WebSocket library’s API is used to read sensor data transmitted over the network. Based
on the obtained sensor data, Unity3D’s Transform component is used to adjust the position
and rotation angle of the experimental platform model. The digital twin experimental
platform’s system interaction is shown in Figure 24.
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The experimental platform digital twin system also integrates visible light and infrared
video camera streams. By using Unity’s WebCamTexture class, a WebCamTexture object
can be created, and the camera’s name specified. Then, assign the WebCamTexture object
to the Material’s Texture property to display the video on a GameObject in the scene. In
addition, control of the WebCamTexture’s playback and pause is required.

The system uses the LineRenderer component to display a dynamic curve graph of
real-time sensor data. The operation process is as follows: Create an empty GameObject
in the Unity editor and add a LineRenderer component to it. Then, write a new C#
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script to control the updating and rendering of the curve data. In the script, calculate the
position of each point on the curve based on the dynamically updated data, and use the
LineRenderer’s SetPositions() method to update these points, thereby achieving dynamic
updating of the curve.

5. Simulated Cutting Experiments
5.1. Preparation of Simulated Coal Sample

In this experiment, the mass ratios of coal dust, cement, sand, and water were used
as control variables to study the variation in compressive strength. Initially, the simulated
coal samples were prepared for each experimental scheme, as shown in Figure 25. The
preparation process included the following steps: first, coal dust, sand, and cement were
sifted through a 20-mesh screen. Then, according to the established experimental scheme,
coal dust, cement, sand, and water were measured in sequence and thoroughly mixed and
stirred evenly. The mixed materials were then filled into molds and compacted to form.
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Figure 25. (a) Coal Rock Specimen Test Mold; (b) Coal Rock Experimental Specimen Block.

The standard experimental coal column calibration samples used 100 mm cubic
columns. Two days later, after the samples had basically solidified, demolding and labeling
were performed. After demolding, calipers were used for measurement. Because the
initial compression area has a significant impact on the actual compressive strength results
during the compression process, it is necessary to ensure the parallelism of both ends
adequately. The coal column was placed horizontally on the platform, and a dial indicator
was used to collect the height, ensuring the coal column’s surface was smooth to avoid
stress concentration.

The simulated coal samples needed to be cured at room temperature for 14 days.
After curing, the calipers and electronic balance were used for measurement and weighing,
the density of the materials was calculated and recorded. The experiment used a 20 kN
microcomputer-controlled electronic universal concrete compressive strength testing ma-
chine to test the uniaxial compressive strength of the simulated coal samples, as shown in
Figure 26. The experiment chose a displacement-controlled load application mode and set
the loading rate at 1.5 mm/min. As the test machine gradually increased the given load,
the simulated coal samples were pressed until destruction, and the compressive strength
was recorded, as shown in Figure 27.

Finally, the experimental data were averaged to obtain the average compressive
strength, and according to the mass ratios of coal dust, cement, sand, and water, the sample
was poured into the coal rock holder designed for the experimental platform, as shown in
Figure 28.
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The experimental cutting test conditions of the test platform were set as follows: the
simulated drum speed was set to 60 r/min, the translation speed of the cutting sample was
0.5 m/min, the drum outer edge diameter was 385 mm, the pick installation angle was 40◦,
and the pick inclination angle was 0◦. This experiment aims to conduct cutting tests on
three samples with different hardnesses, which are:

• Experimental mode one—cutting ratio simulated coal seam material, with a compres-
sive strength of 2.71 MPa and a density of 1388.46 kg/m3;
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• Experimental mode two—cutting ratio simulated coal seam material, with a compres-
sive strength of 3.46 MPa and a density of 1506.56 kg/m3;

• Experimental mode three—cutting ratio simulated coal seam material, with a com-
pressive strength of 4.13 MPa and a density of 1658.45 kg/m3.
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5.2. Time Domain Analysis of Sensor Signals
5.2.1. Analysis of Infrared Thermal Imaging

Infrared thermal imaging typically uses false colors to represent different temperature
intervals, creating an intuitive visual representation that shows the relative temperature
distribution in different areas of the image. However, this method cannot directly provide
accurate temperature measurements and requires further analysis through algorithmic
processing. In contrast, grayscale images intuitively display temperature information
using black and white colors, with brightness variations from white to black indicating the
spectrum from high to low temperatures. As shown in Figure 29, converting the color image
of infrared thermal imaging into a grayscale image and then calculating the temperature is
an effective method. This process includes two steps: first converting the color image into
a grayscale image, and then deriving the temperature values based on the grayscale levels.

The grayscale value of a pixel is linearly related to a certain range of temperatures.
Therefore, the first step involves converting a color image into a grayscale image. This
conversion is achieved by calculating the weighted values of the three channels of the color
image, as demonstrated by the following equation:

Y = 0.299Mr + 0.587Mg + 0.144Mb (12)

In the equation, Y represents the converted grayscale value, Mi represents the matrices
of the extracted different color channels, where r, g, and b represent the red, green, and
blue color channels, respectively.

During direct contact between the pick and coal rock samples, heat is generated due to
the impact, compression, and friction between them, leading to a rise in temperature of the
pick and its cutting area. When the translation speed of the cutting sample and the drum
rotation speed are constant, the properties of the coal rock become the key factors affecting
the temperature changes in the pick and coal rock wall. This means the temperature
variations in the pick and coal rock wall after cutting will also differ. At the beginning of the
cutting phase, the temperature of the contact surface between the pick and coal rock sample
gradually increases. As the cutting progresses, the thickness of the cut by the pick increases,
leading to a rapid rise in temperature of the cutting surface. At this point, the rate of heat
exchange between the cutting surface and air also accelerates. Since the pick during the
cutting phase is embedded in the coal rock sample, the infrared thermal imaging system
cannot capture the real-time temperature of the pick. However, when the pick rotates out
of the coal rock sample with the drum, the infrared thermal imaging system can capture
the highest temperature region on the pick.
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The purpose of this experiment is to measure the temperature changes in the cutting
teeth when cutting samples of different hardness. In order to clearly capture the tem-
perature information of the cutting teeth and reduce the interference of coal rock debris
on temperature measurement, we reduced the advance speed of the coal rock samples.
At the beginning of the experiment, the temperature changes rapidly; as the experiment
progresses, the temperature changes gradually stabilize. At this point, the thermal imaging
results are more representative. Figure 30 shows the grayscale change curve of the tem-
perature after stabilization when cutting coal rock samples of different hardness. As the
hardness increases, both the mean and fluctuation of the grayscale also increase. The figure
averages the top 25% and bottom 25% of grayscale values, with fluctuations increasing by
17% and 14.6%, respectively.
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5.2.2. Analysis of the Force Sensor Signals

In the initial stage, as the cutting thickness of the coal sample by the cutter bit is
relatively thin, the amplitude of the cutting force on the load–time domain curve is relatively
small. With the continuous rotation of the drum, the cutter bit penetrates deeper into the
coal sample, leading to a gradual increase in the instantaneous cutting thickness. This
process is manifested as an increase in the amplitude of the cutting force on the load–time
domain curve.

According to the pattern of cutting force fluctuation, a complete cutting cycle can
be divided into four stages: the initial elastic deformation stage, the plastic deformation
stage, the main crack formation stage, and the crack propagation stage. After the end of
the crack propagation stage, the collapse of the coal block causes a sharp decrease in the
cutting force. Once the cutting thickness reaches its maximum value, it will gradually
decrease. During this process, the cutting load of a single cutter bit shows an overall trend
of gradually decreasing from the maximum peak value until it finally exits the cutting
and enters the no-load stage. The change in load during this stage is primarily due to the
gradual decrease in cutting thickness caused by the rotation of the drum, which in turn
reduces the corresponding cutting load.

The calibration results depict sensitivities of 0.748 mV/V, 2.367 mV/V, and 2.83 mV/V
for the three-dimensional force [17], respectively. Furthermore, the cross-sensitivity error
was lower than 5.02%. The cutting load Fi can be solved by means of the coupling matrix
K. Figure 31 averages the top 20% of force values, with fluctuations increasing by 40% and
27.6%, respectively.
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Figure 31. Experimental pick force analysis (a) Experimental mode one; (b) Experimental mode two;
(c) Experimental mode three.

5.2.3. Analysis of the Torque Sensor Signals

The torque fluctuations in drum cutting are relatively strong, and the load changes
are irregular, with load peaks varying significantly. This is closely related to the number of
cutting teeth involved in the cutting process and the properties of the material being cut.
Different cutting teeth have different cutting entry angles and cutting thicknesses at the
same moment, so it is not feasible to study the overall drum cutting load using a simple
direct proportionality based on a single cutting tooth form. During drum cutting, it is
not just an ideal scenario of cutting teeth engaging with the material; other components
on the drum also come into contact with the specimen. The cumulative load from these
components significantly affects the drum load. Figure 32 shows the torque sensor values
from experiments with three different cutting modes. It is very difficult to distinguish
between the three cutting modes based on these time domain indicators.
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6. Conclusions

This paper elaborates on the design and experimental validation of a digital twin
cutting experiment system for a shearer, focusing on simulating the cutting process for coal
and rock identification. This encompasses the development of a simulated shearer drum
based on the principle of similarity theory, the establishment of a comprehensive experi-
mental platform, and the application of digital twin technology to bridge the gap between
physical experiments and digital simulations. The key components of the study include:

The design of a simulated shearer drum—employing similarity theory to ensure the
simulated drum accurately mirrors the cutting actions of a real coal mining machine, thus
enhancing the reliability of the simulation experiments.

The experimental platform device structure—modifying existing machinery to meet
experimental requirements, including the integration of sensors and a data acquisition
system for real-time monitoring and analysis.

The software system design in digital space—developing a digital twin that comprises
data layers for management and analysis, models for simulation, and application layers for
interactive experimentation and algorithm training.

The simulated cutting experiments—performing tests with prepared coal samples
to collect data on various physical forces, torque, thermal imaging, vibration, and sound,
aimed at analyzing the cutting process and improving efficiency and safety in coal mining
operations. By conducting time domain analysis of sensor signals collected during the
cutting of materials of different strengths, it was found that the characteristics of the
cutting force signal were the most distinct. Extracting the cutting force sensor signal as a
characteristic value can effectively distinguish various cutting modes, providing a reliable
experimental solution for coal rock identification research.
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