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Abstract: The potential energy curves (PECs) and spectroscopic constants of the ground and ex-
cited states of a LiMg+ molecular cation were investigated. We obtained accurate results for the
fifteen lowest-lying states of the LiMg+ cation using the Intermediate Hamiltonian Fock Space Mul-
tireference Coupled Cluster (IH-FS-CC) method applied to the (2,0) sector. Relativistic corrections
were accounted for using the third-order Douglas–Kroll method. In each instance, smooth PECs
were successfully computed across the entire range of interatomic distances from equilibrium to
the dissociation limit. The results are in good accordance with previous studies of this molecular
cation. Notably, this study marks the first application of IH-FS-CC in investigating a mixed alkali and
alkaline earth molecular cation, proving its usability in determining accurate PECs of such diatomics
and their spectroscopic constants.

Keywords: Fock space multireference coupled-cluster method; intermediate Hamiltonian; potential
energy curves; spectroscopic constants; LiMg+ molecular cation

1. Introduction

In recent decades, researchers have shown interest in alkali and alkaline earth molec-
ular dimers given their applications in studies conducted at ultralow temperatures, such
as the controlled preparation of many-body entangled states [1] or the measurement of
proton-to-electron mass ratio [2]. Also, their respective molecular cations recently attracted
the interest of experimental scientists in the context of ultracold studies. Various studies
have demonstrated the usefulness of these systems: the KCa+ cation was applied in the
quantum simulation of solid-state physics [3], NaCa+ cations can be used in quantum infor-
mation processing as quantum logic gates, and RbBa+ can be used to study strong-coupling
polaronic effects [4,5]. Furthermore, previous findings show that ion-atom sympathetic
cooling in a magneto-optical trap is possible for NaCa+ cations [6]. The LiCa+ cation can
be applied as a high-spatial-resolution probe in ultracold chemical reactions [7], and the
LiMg+ cation can be used to measure the electron dipole moment [8]. Moreover, RbCa+

and RbSr+ cations can both be applied in studies of collisional quantum features such as
scattering resonances or intermolecular effects [9,10].

A highly precise knowledge of potential energy curves (PECs) is essential for the
evaluation of the properties of a system and for understanding collision and dissociation
processes. Moreover, theoretically computed PECs provide necessary information for
experimentalists, aiding them in adjusting their equipment to obtain ultracold species [11].
However, calculating PECs using standard computational schemes can be challenging,
even with relatively small systems like diatomic molecular cations. Difficulty arises when
treating the homolytic dissociation of a single bond in which open-shell fragments are
produced. Therefore, using the restricted Hartree–Fock scheme (RHF) for distances far from
equilibrium is incorrect. Alternatively, unrestricted Hartree–Fock (UHF) or restricted open-
shell Hartree–Fock (ROHF) methods are required, which are known for their convergence
problems with the HF and post-HF equations. Theoretical chemistry has proposed several
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solutions to address this issue. A frequently employed method in studies of excited states
(EEs) is the Equation-of-Motion Coupled-Cluster (EE-EOM-CC) method [12–17]. Unfortu-
nately, this method is not size-extensive, which is the reason for its limited use in studies
of PECs [18,19]. A more commonly used approach is the multireference configuration
interaction (MRCI) method, which is size-extensive only in its full CI (FCI) variant, making
it impossible to carry out in a reasonable time period for systems with large numbers of
electrons. As a workaround, researchers often opt to perform calculations exclusively for
valence electrons while freezing the core, impacting the accuracy of the results. To over-
come this limitation, some studies use pseudopotential or ECP (Effective Core Potential)
approximations [20–22]. In this approach, electron correlation is accounted for only for
valence electrons, and it is usually reduced to the CISD (S–singles; D–doubles) method,
which is to the FCI for the two-electron case. This approach also requires considering some
additional parameters representing the potential of core electrons, and they cannot be used
universally for any chosen system.

In this study, we focus on computing the accurate potential energy curves and spec-
troscopic constants of a molecular cation, LiMg+. We decided to utilize an alternative
approach using the IH-FS-CCSD method (the Intermediate Hamiltonian Fock Space Mul-
tireference CC method with singles and doubles) [23], obtaining results in the (2,0) sector,
which is explained further in the Methods section of this manuscript. This method allows
one to choose a doubly ionized system as a reference, dissociating it into closed-shell frag-
ments. This makes it possible to use the RHF as a reference function for any internuclear
distance. Then, calculations using the double-electron attachment (DEA) formalism are
performed to produce energies of the ground and excited states of the studied system. In
the case of the system studied here in the form of the LiMg+ molecular cation, the reference
function was determined for the triple-positive ion LiMg3+:

LiMg3+ → Li+ + Mg2+, (1)

then, utilizing the DEA formalism:

LiMg3+ DEA−−→ LiMg+, (2)

we obtain the energies of the ground and excited states of the LiMg+. This approach
allows smooth PECs to be obtained for the whole range of internuclear distances. IH-FS-
CCSD(2,0) is also a strictly size-extensive method—this property ensures that the energies
of the electronic states of the system converge at an infinite distance to the sum of its
atomic values.

The IH-FS-CCSD(2,0) method [23] was previously proven successful in obtaining PECs
and the spectroscopic constants of diatomic molecules composed of alkali metals in several
studies, as demonstrated in recent papers involving NaLi [24] or LiRb [25] molecules.
However, this marks the inaugural application of this computational approach to study
a molecular cation composed of alkali and alkaline earth metals, specifically the LiMg+

molecular cation. Our objective was to define a suitable methodology for the calculation of
such species and present benchmark accuracy results.

The next section of this work presents computational details and the results obtained,
along with a discussion. The Methods section describes the theoretical background of
the IH-FS-CCSD(2,0) method, and the final section offers conclusion, new insights, and
future perspectives.

2. Results and Discussion
2.1. Background

The LiMg+ system was previously studied with respect to its spectroscopic proper-
ties, both theoretically and experimentally, in only a few papers. The oldest theoretical
works concerned only the spectroscopic constants of the ground state of the molecular
cation [26–28]. More recent papers published in the last decade employed various methods
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to study the spectroscopic constants of the ground and excited states of LiMg+, includ-
ing the MRCI calculations of Gao and Gao [29], the pseudopotential study of ElOualhazi
and Berriche [8], the calculations of Fedorov et al. using CC and MRCI methods [30],
the EE-EOM-CC study of Bala et al. [18], and the CC calculations of Śmiałkowski and
Tomza [11]. In terms of experimental studies, there is a single paper by Persinger et al. in
which the spectroscopic values of only the ground state of LiMg+ are given since the paper
was focused on the neutral LiMg molecule [31].

2.2. Computational Details

Calculations were carried out using the IH-FS-CCSD(2,0) method [23], which is ex-
plained in detail in the Methods section of this manuscript. The main results were computed
using the uncontracted ANO-RCC [32] basis set with additional diffuse functions, which
we called unANO-RCC+. For each atom, we have added six diffuse functions which
are presented in Table 1. These exponents were determined through the even-tempered
scheme [33]—the ratio between the subsequent exponents is equal to 0.35 for lithium and
0.4 for magnesium. This ensures the accurate ordering of atomic states. The final dimension
of the unANO-RCC+ basis set is 242 spherical harmonic basis functions.

Table 1. Additional diffuse functions for the Li and Mg atoms in the unANO-RCC+ basis set for the s,
p, and d shells.

s p d

Li

0.0027497 0.0017173 0.0067528
0.0009619 0.0006010 0.0023635

Mg

0.0062002 0.0053322 0.0209515
0.0024801 0.0021329 0.0083806

The LiMg3+ cation was chosen as the reference system for all double-electron attach-
ment calculations, and all electrons were correlated. The reference function employed
throughout this study was always the restricted Hartree–Fock function. To assess the
impact of relativistic effects on the spectroscopic constants of the LiMg+ cation, we adopted
a two-step approach. Initially, the results for the LiMg+ cation were computed using the
uncontracted ANO-RCC basis set without the additional diffuse functions that are pre-
sented above—we called this basis unANO-RCC. Afterward, scalar relativistic corrections
were applied using the third order Douglass–Kroll [34] method, and the calculations were
repeated using the standard ANO-RCC basis set. The differences between obtained rela-
tivistic and non-relativistic values were computed and added to the spectroscopic constants
derived from the unANO-RCC+ basis set.

All calculations were carried out using our own local modules for the IH-FS-CCSD(2,0)
calculations [23,24], implemented in the GAMESS [35] ver. 2021 R2 Patch 1 and ACES
II [36] ver. 2.7.0 software packages. The spectroscopic constants were determined us-
ing Robert J. LeRoy’s LEVEL program ver. 8.0 [37]. The active space size for the IH-FS-
CCSD(2,0)/unANO-RCC+ calculations was set to 70 (i.e., the 70 lowest virtual orbitals
were chosen as active), resulting in a model space size of 4900. Similarly, for both the
IH-FS-CCSD(2,0)/unANO-RCC and IH-FS-CCSD(2,0) DK3/ANO-RCC calculations, the
active space size was set to 54, and the model space size was equal to 2916.

2.3. Atomic Energies at the Dissociation Limit

Size extensivity is a crucial property in PEC calculations—the energies of the electronic
states of a system must converge to the sum of their atomic values at an infinite distance.
IH-FS-CCSD(2,0) is a strictly size-extensive method. It is presented in Table 2, which
displays values computed using the three basis sets that were utilized in this work. The
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first column depicts a given dissociation limit, while the next columns depict energy values
for Li or Li+ and Mg or Mg+, respectively. The second-to-last column displays the sum of
these energies, while the last column presents the energy at the corresponding dissociation
limit obtained using the IH-FS-CCSD(2,0) method. The energies of the Li+ cation were
computed using the CCSD method (no electrons attached) for the Li atom; for the Mg+

cation, we used IH-FS-CCSD(1,0) equivalent to EA-EOM-CCSD (one electron attached);
and for the Mg atom, the IH-FS-CCSD(2,0) method was utilized (two electrons attached).
The results are equal, proving the size extensivity of the method.

Table 2. Energies of electronic states at dissociation limit of LiMg+ molecular cation compared to
atomic energies in different basis sets.

Diss. Limit Li/Li+ Mg/Mg+ Li/Li+ +
Mg/Mg+ LiMg+ R = ∞

IH-FS-CCSD(1,0)/CCSD IH-FS-CCSD(2,0)/IH-FS-CCSD(1,0) IH-FS-
CCSD(2,0)

Config. E (a.u.) Config. E (a.u.) E (a.u.) E (a.u.)

unANO-RCC+

Mg(3s2)1S+Li+ [He] −7.275561 [Ne] (3s2)1S −200.007773 −207.283334 −207.283334
Mg+(3s)+Li(2s) [He] 2s −7.473553 [Ne] 3s −199.727651 −207.201204 −207.201204
Mg(3s3p)3P+Li+ [He] −7.275561 [Ne] (3s3p)3P −199.909054 −207.184615 −207.184615
Mg+(3s)+Li(2p) [He] 2p −7.405598 [Ne] 3s −199.727651 −207.133249 −207.133249
Mg(3s3p)1P+Li+ [He] −7.275561 [Ne] (3s3p)1P −199.848626 −207.124187 −207.124187
Mg(3s4s)3S+Li+ [He] −7.275561 [Ne] (3s4s)3S −199.820785 −207.096346 −207.096346
Mg(3s4s)1S+Li+ [He] −7.275561 [Ne] (3s4s)1S −199.810337 −207.085898 −207.085898
Mg+(3s)+Li(3s) [He] 3s −7.349683 [Ne] 3s −199.727651 −207.077334 −207.077334

ANO-RCC DK3

Mg(3s2)1S+Li+ [He] −7.276222 [Ne] (3s2)1S −200.288451 −207.564673 −207.564673
Mg+(3s)+Li(2s) [He] 2s −7.474225 [Ne] 3s −200.007961 −207.482186 −207.482186
Mg(3s3p)3P+Li+ [He] −7.276222 [Ne] (3s3p)3P −200.189246 −207.465468 −207.465468
Mg+(3s)+Li(2p) [He] 2p −7.406256 [Ne] 3s −200.007961 −207.414217 −207.414217
Mg(3s3p)1P+Li+ [He] −7.276222 [Ne] (3s3p)1P −200.127825 −207.404047 −207.404047
Mg(3s4s)3S+Li+ [He] −7.276222 [Ne] (3s4s)3S −200.100324 −207.376546 −207.376546
Mg(3s4s)1S+Li+ [He] −7.276222 [Ne] (3s4s)1S −200.088682 −207.364904 −207.364904
Mg+(3s)+Li(3s) [He] 3s −7.346511 [Ne] 3s −200.007961 −207.354472 −207.354472

unANO-RCC

Mg(3s2)1S+Li+ [He] −7.275560 [Ne] (3s2)1S −200.007844 −207.283404 −207.283404
Mg+(3s)+Li(2s) [He] 2s −7.473552 [Ne] 3s −199.727647 −207.201199 −207.201199
Mg(3s3p)3P+Li+ [He] −7.275560 [Ne] (3s3p)3P −199.909071 −207.184631 −207.184631
Mg+(3s)+Li(2p) [He] 2p −7.405596 [Ne] 3s −199.727647 −207.133243 −207.133243
Mg(3s3p)1P+Li+ [He] −7.275560 [Ne] (3s3p)1P −199.848581 −207.124141 −207.124141
Mg(3s4s)3S+Li+ [He] −7.275560 [Ne] (3s4s)3S −199.820188 −207.095748 −207.095748
Mg(3s4s)1S+Li+ [He] −7.275560 [Ne] (3s4s)1S −199.808600 −207.084160 −207.084160
Mg+(3s)+Li(3s) [He] 3s −7.349680 [Ne] 3s −199.727647 −207.077327 −207.077327

We also compared the obtained excitation energies of the lithium and magnesium
atoms with available experimental data [38], as shown in Table 3. In the columns, we depict
the four lowest excitation states of Li and the same for Mg; in the rows, there are values for
the three basis sets used in this work. The agreement between the experimental values is
dependent on the basis set. For lithium, the ANO-RCC basis set performs accurately only
for the first two excited states, altering the order of the third and fourth. The unANO-RCC+
and unANO-RCC basis sets are more accurate, with differences ranging from less than
0.001 eV to 0.003 eV and from 0.001 eV to 0.084 eV, respectively. For magnesium, ANO-RCC
is more accurate, with discrepancies ranging from 0.011 eV to 0.042 eV. The differences for
unANO-RCC+ and unANO-RCC are between 0.015 eV and 0.025 eV and between 0.002 eV
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and 0.028 eV, respectively. Importantly, only the first two terms of lithium are a part of the
dissociation limit presented in this work; therefore, we were able to use the ANO-RCC
basis set. In summary, our method closely reproduces the experimental excitation energies.

Table 3. Excitation energies of Li and Mg atoms. All values are in eV.

Li
IH-FS-CCSD(1,0)

(2p)2P (3s)2S (3p)2P (3d)2D Source/Basis Set

1.848 3.373 3.834 3.879 Exp. [38]
1.849 3.371 3.834 3.876 unANO-RCC+
1.850 3.475 4.392 3.963 ANO-RCC DK3
1.849 3.371 3.835 3.963 unANO-RCC

Mg
IH-FS-CCSD(2,0)

(3s3p)3P (3s3p)1P (3s4s)3S (3s4s)1S Source/Basis Set

2.711 4.346 5.108 5.394 Exp. [38]
2.686 4.331 5.088 5.372 unANO-RCC+
2.700 4.371 5.119 5.436 ANO-RCC DK3
2.688 4.334 5.106 5.422 unANO-RCC

2.4. Potential Energy Curves

The potential energy curves of the fifteen lowest-lying electronic states of LiMg+ were
calculated using the IH-FS-CCSD(2,0) method and the unANO-RCC+ basis set, and they are
presented in Figure 1. The curves are distinguished by eight different colors corresponding
to eight dissociation limits and four different point types depending on the multiplicity
and symmetry of their states. The interatomic distances presented in Figure 1 are limited
to 25 Å, but the tabulated total energies of each state up to 200 Å are provided in the
Supplementary Materials.

Among the fifteen PECs presented in this work, the 41Σ+ state is the only one charac-
terized as having two minima. As expected, the shapes of higher-lying curves are distorted,
with noticeable undulations, and they do not represent regular Morse-like potentials due to
the phenomenon of avoided crossing between adjacent adiabatic potential energy curves
of the same symmetry and multiplicity. Its presence can be explained by the occurrence
of the interaction and charge transfer process between the electronic states of Li-Mg+ and
Li+-Mg. To better illustrate these interactions, we present specific PECs in Figure 2. The
exact positions of the avoided crossing interactions are shown in Table 4, and they are
compared with positions presented in [8]. The agreement is very good, with differences of
less than 2%.

Table 4. Avoided-crossing positions of LiMg+ cation obtained using IH-FS-CCSD(2,0)/unANO-RCC+
in comparison with Ref. [8].

States Position in This Work (Å) Position in [8] (Å)

31Σ+/ 41Σ+ 3.90 3.84
12.26 12.22

51Σ+/ 61Σ+ 6.88 6.93
17.00 16.67

33Σ+/ 43Σ+ 3.29 3.23
10.83 11.03

43Σ+/ 53Σ+ 14.39 14.14
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Figure 1. Potential energy curves of LiMg+ calculated using the IH-FS-CCSD(2,0)/unANO-RCC+
method for the eight lowest dissociation limits.

We also depicted PECs obtained using the IH-FS-CCSD(2,0) DK3/ANO-RCC method
in Figure 3. The tabulated total energies of each state up to 300 Å are also provided in the
Supplementary Material. These PECs are shown purely for comparison as they were used
only while evaluating the influence of relativistic effects on the spectroscopic constants.
Nonetheless, their shapes closely resemble those obtained using the unANO-RCC+ method
(cf. Figure 1). Furthermore, the PECs presented in Figures 1 and 3 uniformly dissociate into
the same limits, and their shapes align with those available in the literature [8].
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Figure 2. Potential energy curves of LiMg+ cation for states in which avoided crossing phenomenon
occurs. Obtained using IH-FS-CCSD(2,0)/unANO-RCC+ method.

2.5. Spectroscopic Constants

The following spectroscopic constants of the LiMg+ molecular cation were obtained:
equilibrium distances Re, well depths De, adiabatic excitation energies Te, harmonic fre-
quencies ωe, anharmonicity constants ωexe, and equilibrium rotational constants Be. The
results obtained using the IH-FS-CCSD(2,0)/unANO-RCC+ method are shown in Table 5.
The relativistic contributions for each constant are given in parentheses. The magnitude of
the impact of relativistic effects on the spectroscopic constants of the LiMg+ cation varies
for different states, but we observe that the contribution is smaller for lower-lying excited
states than for higher-energy states. These relativistic contributions are smaller than for,
e.g., LiRb [25], but they are still non-negligible, and they have some impact on the quality
of the results.

For comparison purposes, we cited previous results from a number of different papers
for LiMg+ which were obtained using different methods. These include CCSD(T)/aug-cc-
pCVQZ [11], (CCSD(T) ≡ CCSD + perturbative triples [39]), CCSDT/cc-pCVQZ (CCSDT
≡ CCSD + full triples [40]), MRCI/cc-pCVQZ [30], and CCSD(T)/cc-pVQZ [18] calcula-
tions for the ground state; EE-EOM-CCSD/cc-pVQZ [18] calculations for excited states;
MRCI/aug-cc-pV5Z [29] and an ab initio approach based on non-empirical pseudopoten-
tials [8] for both the ground and excited states; and, as far as we know, the only experimental
values for the ground state of LiMg+, ωe and ωexe [31].

Comparing our results for ωe and ωexe with the paper by Persinger et al. [31], we
can clearly see that our calculations reproduce the experimental values very well, with
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absolute differences of less than 1% and ∼7.7% for ωe and ωexe, respectively. Moreover,
our ωe value is the closest to the experimental one among all previous theoretical works.

Our results are also in good agreement with theoretical values obtained in previous
works for most cases. The exceptions are values calculated for the 21Σ+ and 31Σ+ states in
a paper by Bala et al. [18], in which they explicitly stated that their Re was largely different
from that considered in [8], which makes it impossible to compare the values directly.

For the ground state, our Re value is the same as the CCSDT value obtained by
Fedorov et al. [30]. Also, our De value is the closest to the result [11] calculated using the
so-called “gold standard” CCSD(T) method [39]. The IH-FS-CCSD(2,0) method is capable
of providing very accurate results even if it does not consider the effect of triple excitations.

Figure 3. Potential energy curves of LiMg+ calculated using the IH-FS-CCSD(2,0) DK3/ANO-RCC
method for the eight lowest dissociation limits.
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Table 5. Spectroscopic constants of LiMg+. De, Te, ωe, ωexe, and Be are given in cm−1; Re is given in
Å. DK3 relativistic corrections are given in parentheses.

Sym. Re De Te ωe ωexe Be Source

Mg(3s2)1S+Li+

X1Σ+ 2.898 (−0.006) 6605 (20) 266.57 (0.21) 2.28 (−0.10) 0.370 (0.002) This work a

268.7 2.47 Exp. [31]
2.900 6628 266 0.369 Theor. [11] b

2.898 6658.8 265.9 2.0 Theor. [30] c

2.900 6649.2 265.4 2.0 Theor. [30] d

2.905 6696.1 265.7 2.12 0.3628 Theor. [18] e

2.928 6557.3 266.4 2.48 0.3623 Theor. [29] f

2.895 6575 264.22 2.63 0.372138 Theor. [8] g

Mg+(3s)+Li(2s)

21Σ+ 5.727 (−0.007) 1052 (1) 23,642 (81) 77.56 (0.19) 1.49 (0.01) 0.095 (0.001) This work a

7.300 283.1 24,618.03 40.0 1.97 0.0595 Theor. [18] e

5.678 1248 23,647 79.59 1.12 0.096860 Theor. [8] g

13Σ+ 3.516 (−0.006) 7823 (−18) 16,870 (100) 189.53 (−0.67) 0.91 (−0.02) 0.251 (0.001) This work a

3.573 6908.1 17,992.74 179.5 0.45 0.2347 Theor. [18] e

3.546 7679.4 16,441.5 187.8 0.84 0.2470 Theor. [29] f

3.514 7983 16,912 189.96 1.43 0.252539 Theor. [8] g

Mg(3s3p)3P+Li+

23Σ+ 7.433 (−0.007) 806 (−10) 27,560 (125) 52.45 (−0.29) 1.03 (0.01) 0.056 (0.000) This work a

7.387 877 27,692 52.57 1.38 0.057214 Theor. [8] g

13Π 2.968 (−0.002) 2588 (3) 25,554 (−111) 210.54 (1.92) 3.55 (0.02) 0.353 (0.001) This work a

2.955 2578.6 26,824.62 215.4 4.38 0.3567 Theor. [18] e

2.990 2822.9 25,070.0 212.0 3.61 0.3475 Theor. [29] f

2.963 2561 26,008 206.32 3.51 0.356099 Theor. [8] g

Mg+(3s)+Li(2p)

31Σ+ 6.659 (−0.020) 2441 (−23) 37,169 (108) 70.10 (0.77) 0.32 (0.01) 0.070 (0.000) This work a

7.408 938.9 38,691.4 61.7 1.39 0.0573 Theor. [18] e

6.657 2548 37,252 70.38 0.48 0.070509 Theor. [8] g

33Σ+ 8.172 (−0.012) 826 (−24) 38,784 (108) 45.17 (−0.03) 0.64 (0.03) 0.047 (0.001) This work a

8.043 916 38,884 46.98 0.53 0.048258 Theor. [8] g

11Π 3.564 (0.001) 1438 (−32) 38,171 (116) 71.83 (−0.17) 0.21 (0.10) 0.244 (−0.001) This work a

3.778 1418 38,383 55.48 1.32 0.218563 Theor. [8] g

3.482 1540.5 37,852.2 87.3 0.57 0.2547 Theor. [29] f

23Π Repulsive This work a

7.615 2 39,799 13.98 16.26 0.055180 Theor. [8] g

Mg(3s3p)1P+Li+

41Σ+ 4.140 (−0.009) −4148 (119) 45,981 (200) 135.97 - 0.181 (0.001) This work a

1st min. 4.101 204 46,132 161.01 31.76 0.185477 Theor. [8] g

41Σ+ 10.067 (−0.394) 604 (33) 41,229 (285) 37.61 (5.61) 0.63 (0.12) 0.031 (0.003) This work a

2nd min. 10.335 644 41,250 34.52 0.46 0.029241 Theor. [8] g

21Π 3.870 (−0.003) −1779 (135) 43,609 (180) 98.89 - 0.207 (0.000) This worka

3.884 54 43,734 95.55 42.26 0.205913 Theor. [8] g

Mg(3s4s)3S+Li+

43Σ+ 9.807 (−0.431) 861 (−483) 46,887 (606) 49.15 (4.70) 0.51 (0.25) 0.032 (0.002) This work a

10.187 1297 46,433 41.99 0.01 0.030084 Theor. [8] g

Mg(3s4s)1S+Li+

51Σ+ 10.299 (−0.665) 955 (−647) 49,098 (782) 48.94 (7.10) 0.35 (0.17) 0.029 (0.003) This work a

10.933 1524 48,523 40.12 0.50 0.026131 Theor. [8] g
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Table 5. Cont.

Sym. Re De Te ωe ωexe Be Source

Mg+(3s)+Li(3s)

61Σ+ 13.603 (−1.461) 446 (−267) 52,275 (1191) 22.27 (−1.16) 0.42 (0.26) 0.017 (0.003) This work a

14.78 807 51,300 24.61 0.15 0.014297 Theor. [8] g

53Σ+ 12.011 (−0.974) 772 (−598) 51,950 (1523) 25.94 (−5.43) 0.40 (0.19) 0.022 (0.004) This work a

12.801 1505 50,601 31.69 0.18 0.019050 Theor. [8] g

a the method used in this work, which is IH-FS-CCSD(2,0)/unANO-RCC+ plus DK3 relativistic correction, as
described in detail in the text. b the method used in [11] is CCSD(T)/aug-cc-pCVQZ. c the first method used
in [30] is CCSDT/cc-pCVQZ. d the second method used in [30] is MRCI/cc-pCVQZ. e the method used in [18] is
CCSD(T)/cc-pVQZ with a relativistic correction for the ground state and EE-EOM-CCSD/cc-pVQZ for excited
states. f the methods used in [29] are the MRCI plus Davidson and third-order Douglas–Kroll–Hess relativistic
correction using the aug-cc-pV5Z basis set. g the method used in [8] is based on pseudopotentials. The basis set
for lithium was (9s8p5d/8s6p3d); for magnesium, it was (9s7p5d4f/7s7p4d4f).

The comparison with the paper by ElOualhazi and Berriche [8] is the most extensive
as it is the only work comprising values for all of the excited states of LiMg+ studied here.
The closest Re values are observed for the 13Σ+ and 31Σ+ states, for which the absolute
difference is 0.002 Å. The most significant error—less than 8%—is calculated for the 61Σ+

state. The good alignment of Re indicates a similar agreement in the derived Be values.
Also, we identified one repulsive state, i.e., the 23Π state. The cited paper defines this

state as having an extremely shallow De of just 2 cm−1; thus, we believe it is probably a
plateau. Moreover, we determined two states—41Σ+ and 21Π—to have barriers, both of
which retain the same dissociation limit. The heights of these barriers are 212 cm−1 and
91 cm−1, respectively. These values correlate to the De values reported in the cited paper.
For the other states, our De is closest in the case of the 11Π state (an absolute difference of
20 cm−1) and farthest in the case of the 53Σ+ state.

The Te values show the best agreement throughout all states among the considered
spectroscopic constants; the largest difference is less than 3% for the 53Σ+ state, and for
most states, it is less than 1%. In nearly all cases, our ωe values are similar to the cited
ones. The exceptions are the 11Π state and the inner minimum of the 41Σ+ state, for
which the absolute differences are larger than 10 cm−1. As for ωexe, the agreement is
weak in most cases; this is due to the shapes of the PECs in large internuclear distances,
which are described well by the IH-FS-CCSD(2,0) method but significantly less well by
pseudopotential-based methods.

In summary, the accuracy achieved is reliable in comparison with Ref. [8], though it
varies depending upon the specific state and the spectroscopic constant in consideration.

3. Methods

Within the single-reference (SR) coupled-cluster theory, the Schrödinger equation

H|Ψ⟩ = E|Ψ⟩ (3)

is solved, assuming the exponential form of the wave function |Ψ⟩:

|Ψ⟩ = eT |Φ0⟩ (4)

where H is a Hamilton operator, E is the total energy of the system, |Φ0⟩ is a reference
(usually Hartree–Fock) function, and T is a coupled-cluster excitation operator. Within the
current approximation of singles and doubles, it takes the form

T = T1 + T2 (5)
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where the operator T1 = ∑ia ta
i a†i is responsible for single excitation, i.e., moving an electron

from an occupied level i to an unoccupied level a and, analogously, the
T2 = ∑ijab tab

ij a†b† ji is responsible for double excitation, i.e., moving two electrons from
occupied levels i,j to unoccupied levels a,b. In situations in which the reference function
|Φ0⟩ is of a multiconfigurational character (which is the case for potential energy curve
calculations) it is necessary to generalize the SR approach to the multireference (MR) case,
i.e., to replace the Schrödinger equation, Equation (3), with its Bloch equivalent:

He f f |Ψ0⟩ = E|Ψ0⟩ (6)

The superiority of the multireference approach relies on the fact that the exact energy,
E, is obtained by solving the above equation or, equivalently, by the diagonalization of the
effective Hamiltonian operator He f f :

He f f = P̂HΩP̂ (7)

within a small subspace (M) of the full configurational space (M0), which is called a model
space and is defined by the projection operator P̂, note that |Ψ0⟩ is a component of the
exact wave function |Ψ⟩ residing within the model space, i.e., |Ψ0⟩ = P̂|Ψ⟩. Of course,
the construction of the He f f is not trivial, and it requires employing the wave operator Ω,
reproducing, by definition, the exact wave function |Ψ⟩ by operating on the model function
|Ψ0⟩:

|Ψ⟩ = Ω|Ψ0⟩ (8)

The form of the wave operator Ω depends on the assumed variant of the multireference
theory. The characteristic feature of the Fock space formulation [41,42] used in the current
work is a specific form of the model space which, by definition, can contain a variable
number of electrons. Within the scheme adopted here, the valence Fock space is composed
of three sectors defined by the following projection operators, respectively:

P̂ = P̂(0,0) + P̂(1,0) + P̂(2,0) (9)

The 0-valence sector corresponds to the reference function |Φ0⟩, and its projection
operator is equal to P̂(0,0) = |Φ0⟩⟨Φ0|. The projectors for the remaining two sectors,
one-valence P̂(1,0) and two-valence P̂(2,0), are written as

P̂(1,0) = ∑
α

|Φα⟩⟨Φα| (10)

P̂(2,0) = ∑
αβ

|Φαβ⟩⟨Φαβ| (11)

where |Φα⟩ represents the configuration with one additional electron placed on the valence
level α, while |Φαβ⟩ represents the configuration with two additional electrons placed on
the valence levels α and β.

The wave operator Ω for the FS-CCSD(2,0) approach takes the form

Ω = {e
˜̃S(2,0)}P̂ (12)

where the brackets { } indicate the normal order of the creation–annihilation operators.
The coupled-cluster excitation operator ˜̃S(2,0) which defines the wave operator for the (2,0)
sector [23], Equation (12), is expressed as

˜̃S(2,0) = S(0,0) + S(1,0) + S(2,0) = S(0,0) + S̃(2,0) = T + S̃(2,0) (13)
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and, by definition, the S(k,0) operator contains k valence particle annihilation operators.
This implies that for l < k,

S(k,0)P̂(l,0) = 0 (14)

The amplitude equations for each sector of the Fock space can be obtained on the basis
of the general Bloch equation written as

Q̂HΩP̂ = Q̂ΩHe f f P̂ (15)

where Q̂ is an operator for the orthogonal part (M⊥) of the full configuration space ex-
pressed as Q̂ = 1̂ − P̂. For the 0-valence sector, the latter equation becomes

Q̂(0,0)HeS(0,0)
P̂(0,0) = Q̂(0,0)eS(0,0)

He f f P̂(0,0) (16)

Note that the last equation is equivalent to the single-reference Schrödinger equa-
tion, Equation (3), since in the one-dimensional case, He f f = E, S(0,0) = T, and Q̂(0,0)

is an orthogonal subspace spanned by the determinants excited with respect to the |Φ0⟩
reference.

For the (1,0) sector, we obtain

Q̂(1,0)HeS(0,0)+S(1,0)
P̂(1,0) = Q̂(1,0)eS(0,0)+S(1,0)

He f f P̂(1,0) (17)

and analogously, for the (2,0) sector, we have

Q̂(2,0)HeS(0,0)+S(1,0)+S(2,0)
P̂(2,0) = Q̂(2,0)eS(0,0)+S(1,0)+S(2,0)

He f f P̂(2,0) (18)

Owing to the killer condition, Equation (14), we eliminate from the exponential in
Equation (16) the operators S(1,0) and S(2,0), and, similarly, from Equation (17), we eliminate
the operator S(2,0). Restricting our model to singles and doubles (cf. Equation (5)), we have
the following for the one-valence sector:

S(1,0) = S(1,0)
1 + S(1,0)

2 (19)

and for the two-valence one:
S(2,0) = S(2,0)

2 (20)

After solving the FS equations for the (0,0) sector, we may further simplify the equa-
tions for the (1,0) and (2,0) sectors by replacing the H operator with a similarity transformed
Hamiltonian H̄ defined as

H̄ = e−S(0,0)
HeS(0,0)

= e−T HeT (21)

Equations (17) and (18) now take form

Q̂(1,0)H̄eS(1,0)
P̂(1,0) = Q̂(1,0)eS(1,0)

He f f P̂(1,0) (22)

Q̂(2,0)H̄eS(1,0)+S(2,0)
P̂(2,0) = Q̂(2,0)eS(1,0)+S(2,0)

He f f P̂(2,0) (23)

The FS-CC method described here is usually referred to as a standard or He f f -based
scheme. In this approach, at each stage, one can encounter real problems with convergence
due to the appearance of intruder states [43,44], i.e., determinants belonging to the orthogo-
nal space with energies very close to those of the model determinants. Hence, the choice of
the active space is, in fact, limited to small spaces. The larger the active space, the more
difficult the solution is.

The intermediate Hamiltonian formalism [45–47] provides a way to avoid the trouble-
some iterative procedure of the FS problems and provides eigenvalues identical to those
from the standard effective Hamiltonian-based method. Thus, the IH scheme can replace
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the iterative solution of the FS equations with a diagonalization of the properly constructed
matrix; thanks to this, all limitations originating from the standard formulation disappear.

The main idea of the IH approach relies on selecting a part of the orthogonal space M⊥
as an intermediate space MI connected by the P̂I projector. In our case, the intermediate
space is spanned by all determinants which are obtained by the direct action of S(2,0)

2

on M(2,0). For the IH-FS-CCSD(2,0) case [23], we have the subspaces M(2,0), M(2,0)
I , and

M(2,0)
I⊥ with the projectors P̂(2,0), P̂(2,0)

I , and Q̂(2,0)
0 , respectively. The projection operators are

related through the following relations:

P̂(2,0)
0 = P̂(2,0) + P̂(2,0)

I (24)

Q̂(2,0) = P̂(2,0)
I + Q̂(2,0)

0 (25)

In this approach, we introduce the following wave operators:

X(2,0) = {eS̃(2,0) − 1}P̂(2,0) (26)

Z(2,0) = P(2,0)
I X(2,0)P̂(2,0) (27)

Y(2,0) = Q(2,0)
0 X(2,0)P̂(2,0) (28)

X(2,0) = Z(2,0) + Y(2,0) (29)

which, at the IH-FS-CCSD(2,0) level take the forms

Z(2,0) = P̂(2,0)
I {(S(1,0)

1 + S(1,0)
1 S(1,0)

1 + S(2,0)
2 )}P̂(2,0) (30)

Y(2,0) = Q(2,0)
0 {(S(1,0)

2 + S(1,0)
1 S(1,0)

2 + S(1,0)
2 S(1,0)

2 )}P̂(2,0) (31)

finally, the intermediate Hamiltonian operator looks like:

H(2,0)
I = P̂(2,0)

0 H̄P̂(2,0)
0 + P̂(2,0)

0 H̄Y(2,0)P̂(2,0) (32)

with:

P̂(2,0)
0 = ∑

ab
|Φab⟩⟨Φab| (33)

where the a, b, . . . indices refer to unoccupied one-particle levels. The diagonalization of
H(2,0)

I over double-electron attached configurations gives eigenvalues and eigenvectors for
the (2,0) problem.

Thus, in summary, the Fock space coupled-cluster approach has two realizations
in the (2,0) sector. The first one, which we denote FS-CCSD(2,0), is based on solving
Equations (22) and (23), and it is impractical to use due to the intruder problem. The second
one, which we denote IH-FS-CCSD(2,0), relies on the construction and diagonalization of
the H(2,0)

I matrix. Note that both approaches give identical solutions as far as the energies
of the electronic states are concerned, and the method we use to compute the PECs and
spectroscopic constants is the IH-FS-CCSD(2,0) method.

One should also mention that the Fock space approach at the one-valence level, i.e.,
the (1,0) and (0,1) sectors, is equivalent to the EOM-CC scheme applied to electron affinity
and ionization potential cases, respectively. This equivalence means that the eigenvalues
obtained via both approaches are identical, while the eigenvectors can be obtained from
each other via a simple transformation. The EOM level, i.e., the final stage of the whole
sequence of computational steps, is quite straightforward and relies on the diagonalization
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of the H̄ operator within the configurational subspace selected in accordance with the
problem under investigation. For the (1,0) sector, we have the following:

H(1,0)
I = P̂(1,0)

0 H̄P̂(1,0)
0 (34)

P̂(1,0)
0 = ∑

a
|Φa⟩⟨Φa|+ ∑

abi
|Φab

i ⟩⟨Φab
i | (35)

and i refers to the number of occupied one-particle levels. Thus, the key point here is the
intermediate Hamiltonian formalism, which offers an easy way to replace the iterative
solution of the standard Bloch equation, Equation (23), with the direct diagonalization of the
IH matrix constructed on the basis of the amplitudes from the (1,0) sector and Equations (31)
and (32), obtained via EOM method, see Equation (34). The final outcome of this is the
elimination of the intruder state problem in the FS approach.

Moreover, the size-extensive Fock space approach has a built-in capability to provide,
by selecting a proper FS sector, the correlated results for an altered (with respect to the
Hartree–Fock (HF) reference) number of electrons. For example, the FS(m, 0) sector pro-
duces results pertaining to a system with m electrons added to the HF function. Assuming
that we take the neutral molecule as an HF reference, these results would correspond to the
m-tuply negative anion. We may take advantage of this capability of the FS approach to
choose—at the HF level—such a reference with a convenient property to dissociate into
closed-shell fragments and to generate a smooth curve for the ground and excited states
in the whole region of interatomic distances, keeping in mind that by selecting a proper
sector of the Fock space, we will recover the original structure we want to study.

4. Conclusions

In this study, we performed accurate quantum–chemical calculations of the poten-
tial energy curves of a LiMg+ molecular cation using the multireference coupled-cluster
method, the IH-FS-CCSD(2,0) method. We overcame the challenge of properly describing
the dissociation of closed-shell species into open-shell parts by employing the double-
electron attachment formalism. Our calculations for the ground and excited states covered,
for the first time, the entire range of interatomic distances using the RHF reference func-
tion, correlating all electrons. This approach also involves the Intermediate Hamiltonian
formulation, which allows for the direct diagonalization of a suitably constructed matrix,
mitigating complications associated with intruder states instead of finding an iterative
solution, as in the standard Bloch equation.

For the first time, the IH-FS-CCSD(2,0) formalism was used to study the PECs and
spectroscopic constants of a molecular cation composed of alkali and alkaline earth metals.
We obtained smooth and accurate PECs of the fifteen lowest-lying states of the LiMg+

cation approaching eight dissociation limits. Through this approach, we also obtained
accurate spectroscopic constants. Among all previous theoretical studies, our ωe value of
the ground state exhibits the closest agreement with the experimental value. Furthermore,
for the ground state, we obtained a level of accuracy comparable to those of CCSD(T) and
CCSDT studies without the need to include the effect of triples. For the excited states,
our results indicate that most of our computed values align well with those from prior
theoretical papers, and observed disparities could likely be attributed to the constraints of
the EE-EOM-CCSD and pseudopotential-based methods.

Based on the quality of results obtained in various prior studies involving diatomic
molecules comprising alkali metals [23–25,48,49] using the IH-FS-CCSD(2,0) method, we
anticipate that the accuracy of presented the PECs and spectroscopic constants of LiMg+

can be regarded as benchmark-level.
The present study aims to lay the groundwork for promising perspectives for future

spectroscopic investigations of molecular cations of alkali and alkaline earth metals. It
especially seeks to open a path for further theoretical and experimental studies on LiMg+,
mainly in the context of research on ultracold species where accurate PECs and spec-
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troscopic constants are much needed. A wide range of potential applications of these
molecular cations, e.g., in the studies of ultracold chemical reactions, quantum information
processing, or measurements of fundamental physical constants, will be of great importance
in the future.
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